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The problem in this thesis was originally motivated by problems presented with docu-

ments of Early England Data Set (DEEDS). The central problem with these medieval

documents is the lack of methods to assign accurate dates to those documents which

bear no date.

With the problems of the DEEDS documents in mind, we present two methods

to impute missing features of texts. In the first method, we suggest a new class of

metrics for measuring distances between texts. We then show how to combine the

distances between the texts using statistical smoothing. This method can be adapted

to settings where the features of the texts are ordered or unordered categoricals (as

in the case of, for example, authorship assignment problems).

In the second method, we estimate the probability of occurrences of words in

texts using nonparametric regression techniques of local polynomial fitting with ker-

nel weight to generalized linear models. We combine the estimated probability of

occurrences of words of a text to estimate the probability of occurrence of a text as

a function of its feature – the feature in this case being the date in which the text is

written. The application and results of our methods to the DEEDS documents are

presented.
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Chapter 1

Introduction

1.1 Background of the DEEDS Project

By studying records of property transfers, medieval historians can teach us about the

social, political and economic dynamics of a particular period in history. In order

to carry out such work, it is critical that original legal documents, such as deeds, or

records of property holdings and transfers are accurately dated. Unlike other parts of

Europe, it was not until the accession of Richard I (1189) that it became customary

in England to date royal charters, and more than a century would pass until the reign

of Edward II, 1307-27, before private charters routinely began to bear dates. This

administrative style has left over one million undated property transfer documents

(deeds) in British archives from the 12th and 13th centuries alone.

The DEEDS1 project group founded in 1975 under the direction of Michael Gervers2

at the University of Toronto, has been transcribing into machine readable form English

charters dating from around the 11th to the 14th century from across England and

1DEEDS stands for Documents of Early England Data Set
2Professor of History, University of Toronto
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Chapter 1. Introduction 2

Wales. These documents are written in the language of their time, Latin. The goal

of this research group is the development of methodologies for dating these property

conveyance documents. The DEEDS corpus, as at the time of our work, consisted of

over 6000 documents from England and Wales, although only 3353 of them are used

in the data analysis of this thesis3.

The DEEDS corpus consists of documents registering property conveyances. Each

document describes rights and obligations pertaining to a property. The documents

used in the analysis of this thesis span almost 400 years, the earliest being dated

1089, and the latest 1466. Traditionally, there have been two types of methods

applied to the dating of DEEDS manuscripts, commonly referred to as “external”

and “internal” methods. Documents bearing dates within the text itself (about 5%

of the extant corpus) are considered to be internally dated. Even then, one cannot be

sure whether such a date represents the actual date when the document was drafted,

or rather, for example, the date of the property transfer, or the date in which this

transfer was recorded, or in the case of copies, the date on which the copied document

was registered in a cartulary or deed book. (See Gervers, 2000, p. 4). The method

of external dating refers to the use of external evidence, for example, person or place

names in a dated document, compared to those in an undated one can assist in

assigning a date to the undated document. However, unless there happens to be a

reference to a particular datable event in the document, this method of document

dating has some significant drawbacks. For instance, there are cases in which lists

contain names that are closely replicated in preceding or in succeeding generations. As

noted by Gervers (Gervers, 2000, p. 14), many of the names do not have identifiable

counterparts elsewhere, and even if such counterparts are found, there is no sure way

3There were only 3353 documents available to us at the start of this study.
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of knowing if one is dealing with the same person or only with a namesake. Gervers

(Gervers, 2000, p. 16) gives an example in which he used name association to date a

document only to discover many years later that his estimate was off by at least 40

years – the problem being that the names used in that document were largely similar

to those in another witnessed by the grandchildren of the individuals appearing in

the earlier document. It is a well known custom of the English high middle ages

that Christian names succeeded from generation to generation, as for example in the

names “William son of William son of William son of William”, or “William son

of Richard son of William son of Richard” (Gervers, 2000, p. 18). Such a tradition

was “so widespread that some village rosters at least would appear to have been

remarkably similar from one generation to the next for upwards of a hundred years

and probably more” (Gervers, 2000, p. 18). Using name association in the dating of

documents can therefore frequently be very misleading.

It has been suggested that studying the forms of the scripts (palaeography) in

which the DEEDS documents are written could be of significant help in the dating

process. However, this is not really an option since the vast majority of those doc-

uments have survived only as copies. For similar reasons, sigillography (the study

of seals) is useful only in those rare instances where documents have survived in the

original along with their seals (Gervers, 2000, p. 18).

When scholars attach imprecise circa dates to such documents, the circa dates

tend to take on a historical value of their own. Subsequent historians are prone

to use them as precise dates, which leads to even greater inaccuracies when they

calculate dates for documents which they may themselves be editing. The result is

a compounding of errors. One of the ways to remedy the problems that arise from

dating by internal and external methods, is to study the similarities of phrase or word

patterns between undated charters and dated ones, for it is well known to medieval
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historians that the usage, form and content of the language of medieval documents

were constantly changing over time. Gervers (Gervers, 2000, p. 19) cites the example

of the phrase amicorum meorum vivorum et mortuorum (“of my friends living and

dead”) which had a life span of some 90 years (from 1150 to 1240) in the DEEDS

database. Such forms of language in grant offers are in ‘vogue’ for a certain period

of time and then eventually die out, so that the occurrence of such a phrase in an

undated document can be very valuable in the dating process (Gervers, 2000, p. 19).

In the case of DEEDS, the dating of the documents was done very carefully, in

that only those documents that could be dated to within a year of the time of issue

form part of the data set. Thus, only accurately dated documents form the DEEDS

corpus. The purpose of the present thesis is to develop statistical methodologies to

estimate the dates of undated documents by comparing phrases and word patterns

from the undated ones to those occurring in the dated ones.

As already mentioned, 3353 DEEDS documents were used for the data analysis in

this thesis. These documents, written in Latin, come from already published sources.

Those transcriptions have not been checked against the originals. This means that

if editors mistakenly left out certain words from certain documents, it is the revised

documents that form part of the corpus. Moreover, a large number of the documents

in cartularies were themselves copied from earlier charters, and – as would modern day

editors – medieval scribes may have abbreviated, left out, or replaced some phrases

with those more appropriate to their time.

There is also reason to suspect that some variation can be attributed to the type

of document, such as the place of issue, as well as the issuer (for instance, a member

of the clergy), and the institution responsible for its production. For these reasons,

every document in the DEEDS data set is accompanied with descriptive data under

the following headings:
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a) Document

b) Person

c) Property/Compensation

d) Lease

e) Relation

f) Linkage

g) Role

Under the header ‘Document’, data on the document type is noted, such as

whether the document is a transfer or an agreement, the place where the transac-

tion took place, and type of seal used. Under the header ‘Person’, information, such

as the name to whom the document was issued, the modern equivalent of the first

and last names, occupation, nationality, etc., is recorded. Under the header ‘Prop-

erty/Compensation’ information, such as the type and value of the property, location

of the property, and the number and quantity of the property are listed. Under

the header ‘Lease’, temporal information related to the property, such as duration

of an agreement, etc., is listed. While information for Document, Person, Prop-

erty/Compensation, and Lease were extracted from the original documents, the last

three headers, ‘Relation’, ‘Linkage’, and ‘Role’, express connections between individu-

als, between properties, or between people and properties, respectively, as determined

by historians. For details, see Gervers et. al. (1990).

The data analysis in this thesis uses only the documents as they occur in the

database and does not make use of the above mentioned additional information.

We now give an example of what one of the documents in the DEEDS database

looks like. Numbers are placed between two semi-colons, and punctuation and para-

graphing have been omitted. The first line consists of a file identification number for

the document followed by the date (year) of the document.
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”00640214”,”1237”,

Haec est finalis concordia facta in curia domini regis apud Westmonasterium a die S Johan-

nis Baptistae in !xv! dies anno regni regis Henrici filii regis Johannis !xxi! coram Roberto de

Lexinton Willelmo de Eboraco Ada filio Willelmi Willelmo de Culewurth justitiariis et aliis

domini regis fidelibus tunc ibi praesentibus inter Johannem Baioc quaerentem et Robertum

Sarum episcopum et capitulum deforciantes per Radulfum de Haghe positum loco ipsorum

ad lucrandum vel perdendum de advocatione ecclesiae de Waye Bayouse unde assisa ultimae

praesentationis summonita fuit inter eos in eadem curia scilicet quod praedictus T recognovit

advocationem praedictae ecclesiae cum pertinentiis esse jus ipsorum episcopi et capituli et

ecclesiae suae Sarum ut illam quam idem episcopus et capitulum Sarum habent de dono

Alani de Baiocis patris praedicti Johannis cujus haeres ipse est et idem episcopus et capitu-

lum praedictum concesserunt pro se ob successoribus suis eidem Johanni ut eidem ecclesiae

quotiescunque tota vita ipsius eam vacare contigerit possit idoneam personam praesentare

ita quod quicunque pro tempore fuerit persona ejusdem ecclesiae ad praesentationem ipsius

Johannis reddet singulis annis praedictis episcopo et capitulo sex marcas argenti de prae-

dicta ecclesia apud Sarum nomine pensionis scilicet ad festum S Michaelis !xx! solidos ad

Natale Domini !xx! solidos ad Pascha !xx! solidos ad nativitatem beati Johannis Baptistae

!xx! solidos et post decessum ipsius Johannis advocatio praedictae ecclesiae cum pertinentiis

remanebit praedictis episcopo et capitulo Sarum et eorum successoribus quieta de haered-

ibus ipsius Johannis in perpetuum Et praeterea idem episcopus et capitulum praedictum

concesserunt pro se et successoribus suis quod ipsi de caetero invenient unum capellanum

divina celebrantem singulis diebus anni in capella beati Johannis sita infra parochiam de

Waye pro anima praedicti Johannis et pro animabus haeredum suorum et antecessorum

suorum et pro cunctis fidelibus in perpetuum et idem episcopus et capitulum praedictum

et successores sui invenient ornamenta libros et luminaria sufficientia in eadem capella in

perpetuum
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1.2 Description of the data

In this section, we provide descriptive statistics of the DEEDS documents. Figure 1.1

is a histogram for the dates of the 3353 DEEDS documents available to us. It shows

that most of the documents date from the mid 12th century to the 14th century,

after which the dating of private charters became commonplace. The mean date of

the DEEDS charters is 1247, and the standard deviation is 46 years.

 

date

do
cu

m
en

t f
re

qu
en

cy

1100 1200 1300 1400

0
10

0
20

0
30

0
40

0
50

0
60

0

Figure 1.1: DEEDS documents distribution of dates presented as a histogram. The total number

of documents is 3353.

Among these 3353 documents, there are a total of 50,006 distinct words. Of these,

28,282 (approximately 56%) occur only once, and are therefore not useful in the dating

methodologies based on distance and maximum prevalence (Chapter 5 and Chapter

6, respectively). Table 1.1 lists the percentage of times that words occur relative to

words that have occurred at least twice. We see, for example, that among words
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that have occurred more than once, words that have occurred only two or three times

constitute about half (33% + 15%) of them.

Table 1.1: Frequency of occurrences of the distinct words

Word As a percentage of the words

frequency that have occurred more than once

28,282 occur only once

7223 occur twice 33%

3265 occur three times 15%

4952 occur more than 10 times 23%

3094 occur more than 20 times 14%

1644 occur more than 50 times 7.5%

1004 occur more than 100 times 4.6%

264 occur more than 500 times 1.2%

109 occur more than 1000 times 0.5%

From Figure 1.2, which plots the document lengths of the DEEDS manuscripts

against their dates, we can see that there is no clear relationship between the length

of a document and its date. Some quantiles for the document lengths are:

minimum length = 10 words

1st quartile length = 150 words

median length = 201 words

mean length = 232.4 words

3rd quartile length = 273 words

maximum length = 984 words.



Chapter 1. Introduction 9

1100 1200 1300 1400

0
20

0
40

0
60

0
80

0
10

00

date

do
cu

m
en

t l
en

gt
h

Figure 1.2: Plot of date versus length of the DEEDS documents.

1.3 Outline of thesis

This thesis develops statistical methodologies to estimate the dates of the DEEDS

documents which may, in turn, be used to estimate the dates of undated similar doc-

uments. This Chapter provided the historical background for the DEEDS documents

data set, as well as some descriptive statistics concerning the properties of the docu-

ments themselves. In Chapter 2, we describe some earlier attempts to estimate the

dates of the DEEDS documents, and in particular the work of the DEEDS project

group. In Chapter 3, we discuss basic concepts and methods from the branch of com-

puter science known as information retrieval, which focuses on methodologies used in

the retrieval of documents relevant to a particular query or search term. The notion

of distance metrics between two documents is introduced there and a new class of

metrics for measuring distances between documents, generalizing previous distance
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measures between documents in the literature, is presented. (These new classes of

distance measures will be used in Chapter 5). Chapter 4 discusses some relevant

statistical tools which are used in Chapter 6 (and to some extent in Chapter 5.) In

particular, the concepts of kernel density estimation and local polynomial regression

as it applies in the framework of generalized linear models (local GLM), are discussed.

Chapters 5 and 6 contain the main original work of the thesis. In Chapter 5,

we adapt ideas from information retrieval to measure the “distances” between the

documents in a training set and a particular document that we wish to date, and

we use kernel smoothing on the weighted distance information of the elements of the

training set to construct a date estimator. A fundamentally different dating method

is described in Chapter 6. It involves using local kernel smoothing in the GLM to

estimate the probabilities of occurrences of word sequences as a function of time, and

then uses these probabilities to estimate the most likely date in which a document

was written. We call this the “method of maximum prevalence”. We are later able to

measure and compare the accuracy of both of our dating methods since we do know

a priori the “true” dates of the DEEDS documents. We are also able to compare the

accuracy of our two methods to the accuracy that has previously been achieved by

the DEEDS project team.

In the concluding Chapter 7, we broaden the scope to describe work that involves

the use of statistical methods for text categorization, such as computational linguis-

tics, and authorship assignment, as studied by Mosteller and Wallace (1963) in the

case of the federalist papers. In the spirit of that work, we also examine other methods

of extracting informative or useful words, such as the use of regression trees. These

ideas can be viewed as ways to extend the methods of Chapters 5 and 6.



Chapter 2

Previous Analyses of the DEEDS

Data

Prior to our involvement in the DEEDS project, algorithms for dating undated docu-

ments were developed by personnel in the DEEDS group based on carefully considered

ad hoc procedures. Although these methods were developed by persons not trained

in statistics, these nevertheless were methods having considerable inherent interest,

and in certain aspects actually went beyond what persons with statistical training

may have been able to come up with. In this chapter, we will describe one of these

methods, developed by Rodolfo Fiallos, and for which sufficient documentation has

survived to allow us to give a relatively accurate description. Our reference for this

chapter is Fiallos (2000) and personal communications.

2.1 The method of Rodolfo Fiallos

The algorithm for the dating procedure that had been developed by Rodolfo Fiallos of

the DEEDS group employs the matching of word and phrase patterns (i.e. particular

11
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sequences of consecutive words, also referred to as ‘matching patterns’) between a

validation data set and those of a training data set. The underlying assumption of

this dating procedure, as indicated in the previous chapter, is based on the belief that

there should be a relatively high concentration of matching patterns near the true

date of a document in question. The characteristics of matching patterns believed to

be most important for the dating process according to Fiallos are:

∙ Length: the number of words in a matching pattern.

∙ Lifetime: the difference, in years, between the last and the first occurrence of

the matching pattern. If a matching pattern occurs in one given year only, then

its ‘lifetime’ is assigned the value 0.

∙ Currency: the ratio of lifetime of the pattern to the number of distinct years

in which the matching pattern has occurred. Currency may be thought of as

measure of the average number of lifetime-years per occurrence of a matching

pattern.

A function based on these three variables was constructed to provide a numerical

value of the ‘importance’ of a matching pattern. This function will be described in

the following subsection

We note here that prior to implementation of the algorithm, a process of mod-

ification and standardization was applied to all of the documents in the training

and validation sets in order to avoid break-up of word patterns due solely to differ-

ing numeric expressions, differing person or place names, and/or minor differences

in spelling. For instance, all ‘v’s were replaced with ‘u’s, and all numeric expres-

sions were replaced with ‘#’s. Also, all punctuation was eliminated, and names were

replaced with ‘P’s.
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2.2 Description of the algorithm

The method developed by Rodolfo Fiallos of the DEEDS group was as follows. De-

note by 𝒟 the document that we wish to date, and suppose that it consists of an

ordered sequence of 𝑛 consecutive words {𝑊1, ⋅ ⋅ ⋅ ,𝑊𝑛}. It is understood that we

have available a training set of 𝑇 documents whose dates are known to us for use in

the procedure we shall describe. A ‘matching pattern’ of length 𝑘 is defined to be a

sequence of 𝑘 consecutive words, {𝑊𝑖,𝑊𝑖+1, ⋅ ⋅ ⋅ ,𝑊𝑖+𝑘−1} for 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 − 𝑘 + 1.

For every ‘matching pattern’ in the document 𝒟, ranging in length from 1 to 𝑛, a

number ‘MT’ (which stands for ‘Multiplicador Total’ in Spanish, or ‘Total Multiplier’

in English) is computed. MT is a function of what was assumed (as in the previous

subsection) to be the three most important characteristics of a matching pattern –

namely length, lifetime and currency. It is defined as

𝑀𝑇 =𝑀1(length)×𝑀2(lifetime)×𝑀3(currency)

where 𝑀1,𝑀2 and 𝑀3, respectively, are particular functions of the pattern’s length,

lifetime and currency. Moreover, these functions are defined in such a manner that

the larger the MT value of a pattern is, the more informative it is considered to be

for the dating process. The definitions of 𝑀1,𝑀2 and 𝑀3 used by Rodolfo Fiallos are

as follows:

𝑀1 = 1 if length ≤ 3,

and

𝑀1 = 1 + 𝐶0 × (length− 3) if length > 3

where 𝐶0 is a number allowed to take on values in the set {0.1, 0.2, 0.3, 0.4, 0.5}.
Both the cut-off point for length in the definition for 𝑀1, and the number 𝐶0 are
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determined by trial and error. The purpose of the function 𝑀1 is to give more weight

to the longer matching patterns.

Next,

𝑀2 = 𝐶1, if lifetime = 0 (i.e. the pattern does not occur elsewhere)

𝑀2 = 1, if 0 < lifetime ≤ 𝐶2

𝑀2 = (−0.9× lifetime + 𝐶3 − 0.1× 𝐶2)/(𝐶3 − 𝐶2), if 𝐶2 < lifetime ≤ 𝐶3

𝑀2 = 0.1, if lifetime > 𝐶3

where 𝐶1 takes on values in {0.5, 0.6, 0.7, 0.8, 0.9, 1.0},𝐶2 takes values in {10, 20, 30, 40, 50},
and 𝐶3 takes on values in {40, 60, 80, 100, 120}. Here again, the various cut-off values

𝐶1, 𝐶2 and 𝐶3 are determined by trial and error. Note that as lifetime of the pattern

increases, the smaller the value of the function 𝑀2 becomes. This is because it is

supposed that matching patterns having longer lifetimes are less informative since

they are more spread out and not clustered around a particular date.

Finally,

𝑀3 = (1/32)× length, if currency = 0

𝑀3 = 1.0, if 0 < currency ≤ 𝐶4

𝑀3 = (−0.5/𝐶4)× currency + 1.5, if 𝐶4 < currency ≤ 2× 𝐶4

𝑀3 = (−0.4/𝐶4)× currency + 1.3, if 2× 𝐶4 < currency ≤ 3× 𝐶4

𝑀3 = 0.1, if currency > 3× 𝐶4

where

currency =
lifetime

number of distinct years in which pattern occurs
,

and 𝐶4 takes on values in {2, 3, 4, 5, 6}. Here again, the cut-off value 𝐶4 is determined

through trial and error. The larger the value of currency (i.e. the more sparse the
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occurrence of the matching pattern is over the years of its lifetime) the smaller is

the corresponding 𝑀3 value. When no matching word pattern exists in the training

set over which this algorithm is applied, the lifetime = 0, and therefore the value of

currency = 0. Note that since the absence of a matching word pattern in the training

set is presumed to most likely be due to its length (i.e. longer ‘matching patterns’ are

less likely to be found in the training set), 𝑀3 is still set to take on a small fraction

of the value of the length in cases where the pattern does not occur in the training

set (i.e. when the currency = 0).

Once the MT values have been computed for all of the ‘matching patterns’ in

the document 𝒟, those MT values are summed within each of the years for which

training data are available. Specifically, for each year for which training data are

available, the MT values of all the ‘matching patterns’ in 𝒟 which also occur in that

year are summed, thereby resulting in an overall function of MT over time. As an

example, we refer to Gervers (1998) in which the ‘matching pattern’ dictum redditum

cum omnibus pertinentiis suis is discussed. For a certain choice of 𝐶0, 𝐶1, 𝐶2, 𝐶3 and

𝐶4, this pattern has an MT value of 1.60. Now this pattern occurs in the training set

in year 1275. The MT value at year 1275 is therefore incremented by the amount 1.60,

and the MT value at year 1275 will keep increasing if more matching word pattern

are found in that year corresponding to patterns occurring in the document 𝒟. In

this way, the values of MT, for the document 𝒟 is built up as a function over time.

Actually, not all the matching patterns were used in the Fiallos’ process; only

matching patterns with MT values higher than some threshold value, say 30, were

used. The rationale for this truncation was to reduce noise arising from the MT values

of patterns considered to be relatively uninformative.

Now, one also needs to account for the fact that the number of available training

documents varies over time. Therefore, prior to assigning the year corresponding to
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the highest value of MT as the most likely date for the document 𝒟, the values of MT

are each first divided by the number of documents in the training set for each of the

years in which training data are found, so as to standardize the MT values; these new

MT values are referred to as ‘Global MT’, or GMT values for short. Furthermore, the

dates can be collapsed (i.e. grouped) into given date ranges – for example, the year

axis can be divided into 20 year periods, say, and the GMT value for each such period

would then be taken as the sum of the GMT values over the years in the period. The

advantage of this process of collapsing of dates is that it provides a less variable global

picture of the overall relationship between date and GMT. Once the date range that

corresponds to the highest value of GMT has been identified, we may expand that

range by 10 years to either side of the optimal date range to create a region of dates

now called a “search zone” which is thought to be the range of dates most likely to

contain the true date of the document 𝒟. Then, for such a given search zone (centred

at the optimal date range), the date range is then reduced from the initial 20 year

period to, say, 10 years, and new GMTs are computed over the shorter intervals.

A new optimal date range is thus identified and a new search zone is then created

by expanding by 5 years on either side of this new date range. Finally, by reducing

the size of the search zone to a single date range (in this instance, the target was to

date the document to within a five year period), we finally obtain the estimated date

range (which is a 5 year period) for the age of the document 𝒟. Figure 2.1 which

plots actual versus estimated dates illustrates the performance of Fiallos’ method on

1484 documents based on a training set of approximately 3500 documents. The mean

absolute error for the method was found to be 16 years.

Finally, we should mention that all of the constants indicated above were chosen

via a leave-one-out cross-validation type of procedure applied to 1484 of the 3500

documents. Specifically, if 𝑇 is the total number of documents in the available col-
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Figure 2.1: Estimated dates by Fiallos’ method versus the true dates for 1484 documents selected

from within a data set of approximately 3500 documents. The mean of the absolute error is 16 years.

lection, the dates of 1484 of the documents were estimated based on the remaining

𝑇 − 1 training documents. Furthermore, these same 1484 documents were used in

producing Figure 2.1. Thus, since no fresh “test set” was used to produce it, the

MAE estimate of 16 years is likely to be optimistic.



Chapter 3

Some Previous Work on Text

Analysis

3.1 Computational linguistics

There is a substantial technical literature pertaining to the analysis of textual doc-

uments. We review a number of these methods in this chapter, including computa-

tional linguistics, authorship assignation, and information retrieval. In particular, in

our discussion of information retrieval we review set theoretic measures of document

similarity which will be used in one of the methods that we will propose.

3.1.1 n-gram models

Statistical language models are used to estimate the distribution of natural language

phenomena for the purposes of speech recognition, handwriting recognition, machine

translation and spelling correction. Essentially, statistical language models estimate

the probability distributions of various linguistic units, such as words, sentences, and

whole documents. Since there are a large number of parameters to estimate, the

18
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availability of a large volume of training data is crucial.

One of the fundamental questions that arises in language modelling is the extent

to which one needs to use knowledge about the language which is being analyzed.

Remarkably, it turns out that some of the most successful techniques in language

modelling are devoid of any knowledge of linguistic structure or language theory, and

what is essentially being analyzed, are just sequences of words which might as well be

sequences of arbitrary symbols (Rosenfeld, 2000). Below we present one of the basic

concepts of statistical language modelling, the so called n-gram model. We used Chen

and Goodman (1998) as our main reference here.

We first illustrate the 𝑛-gram model for the case 𝑛 = 2. (Note that 2-grams

are also called bigrams). If a sentence 𝑠 is composed of an ordered sequence of l

words 𝜔1, 𝜔2, . . . , 𝜔𝑙, then (if viewed in the appropriate context) the probability of the

occurrence of this sentence 𝑃 (𝑠) can be expressed as

𝑃 (𝑠) = 𝑃 (𝜔1)𝑃 (𝜔2∣𝜔1) ⋅ ⋅ ⋅𝑃 (𝜔𝑙∣𝜔1, . . . , 𝜔𝑙−1)

=
𝑙∏

𝑖=1

𝑃 (𝜔𝑖∣𝜔1, . . . , 𝜔𝑖−1)

where we define 𝑃 (𝜔1) ≡ 𝑃 (𝜔1∣𝜔0). In a bigram, it is assumed that the probability of

a word only depends on the word immediately preceding it. Thus, under the bigram

model we have (essentially)

𝑃 (𝑠) =
𝑙∏

𝑖=1

𝑃 (𝜔𝑖∣𝜔1, . . . , 𝜔𝑖−1) =
𝑙∏

𝑖=1

𝑃 (𝜔𝑖∣𝜔𝑖−1) . (3.1)

To estimate 𝑃 (𝜔𝑖∣𝜔𝑖−1), we let 𝑐(𝜔𝑖−1𝜔𝑖) denote the number of times the bigram 𝜔𝑖−1𝜔𝑖

occurred in the available training text, and we take, as our estimate

𝑃 (𝜔𝑖∣𝜔𝑖−1) = 𝑐(𝜔𝑖−1𝜔𝑖)∑
𝜔 𝑐(𝜔𝑖−1𝜔)

. (3.2)

More generally, in the n-gram model, the conditional probability of a word depends

only on the 𝑛 − 1 words preceding it. For an n-gram model (where 𝑛 > 2), the
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analogous form of equations (3.1) and (3.2) respectively are

𝑃 (𝑠) =
𝑙∏

𝑖=1

𝑃 (𝜔𝑖∣𝜔1, . . . , 𝜔𝑖−1) =
𝑙∏

𝑖=1

𝑃 (𝜔𝑖∣𝜔𝑖−1
𝑖−𝑛+1)

and

𝑃𝑀𝐿(𝜔𝑖∣𝜔𝑖−1
𝑖−𝑛+1) ≡ 𝑃 (𝜔𝑖∣𝜔𝑖−1

𝑖−𝑛+1) =
𝑐(𝜔𝑖

𝑖−𝑛+1)∑
𝜔 𝑐(𝜔

𝑖−1
𝑖−𝑛+1𝜔)

(3.3)

where 𝜔𝑗
𝑖 is defined to be the string 𝜔𝑖 . . . 𝜔𝑗, and where we take 𝜔0 to be < bos >

(i.e. beginning of sentence) and 𝜔𝑙+1 to be < eos > (i.e. end of sentence). In the

linguistics literature, the estimate in equation (3.3) is referred to as the maximum

likelihood estimate, or ML for short.

3.1.2 Smoothing the n-gram estimates

We may see from equation (3.1) that if any of the terms in the right hand-side,

𝑃 (𝜔𝑖∣𝜔𝑖−1), were estimated to equal zero, then 𝑃 (𝑠) would be estimated to equal zero.

For example, in speech recognition, the goal is to find a sentence 𝑠 that maximizes

𝑃 (𝑠∣𝐴) ∝ 𝑃 (𝐴∣𝑠)𝑃 (𝑠) for a given signal 𝐴. If the prior 𝑃 (𝑠) is estimated as zero,

then 𝑃 (𝑠∣𝐴) will equal zero no matter how unambiguous the acoustic signal is (Chen

and Goodman (1998)). In order to address such difficulties, smoothing techniques for

the ML estimates have been developed.

Here smoothing refers to a technique designed to smooth out the peaks and troughs

of the ML estimates of equation (3.3) so that high probabilities are adjusted down-

wards and low probabilities are adjusted upwards. It also prevents word strings from

being assigned a zero probability. Furthermore, when probabilities are estimated

from small counts, smoothing has the potential for improving estimation significantly

(Chen and Goodman, (1998)).
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As an example, consider one of the simplest smoothing methods called Additive

Smoothing. In this method, under an n-gram model, we add a small 𝛿, typically

0 < 𝛿 ≤ 1, to the observed count of each word, yielding

𝑃𝑎𝑑𝑑(𝜔𝑖∣𝜔𝑖−1
𝑖−𝑛+1) =

𝛿 + 𝑐(𝑤𝑖
𝑖−𝑛+1)

𝛿∣𝑉 ∣+∑
𝜔 𝑐(𝜔

𝑖−1
𝑖−𝑛+1𝜔)

.

Here 𝑉 , the vocabulary, is the set of all words in the corpus. In practice, ∣𝑉 ∣ is
often limited to 10,000 words or less, and words not found in the vocabulary are

mapped to a single distinguished word called ‘unknown word’. Note that if 𝛿 = 0 we

recover the ML estimate. In practice, Additive Smoothing performs poorly. There are

however many other smoothing methods in the literature with superior performance

which involve interpolation among the higher- and lower-order 𝑛-gram models, such as

methods proposed by Jelinek and Mercer (1980), Witten and Bell (1991), and Kneser

and Ney (1995). Many other popular ones are also discussed and their performance

evaluated in Chen and Goodman(1998). Further references in the areas of language

modelling can be found in Charniak (1993) and Manning and Schutze (1999).

3.2 Authorship assignation: The Federalist Papers

The Federalist Papers are a series of essays that were published anonymously (under

the name Publius) from 1787 to 1788 and were written by Alexander Hamilton, James

Madison and John Jay. They were intended to persuade the citizens of New York

to ratify the Constitution. Of the 77 essays that were published, it is known that 5,

and only those 5, were written by Jay, that 43 were written by Hamilton, and 14 by

Madison. Three of the essays are known to have been jointly written by Hamilton and

Madison. The authorship of the remaining 12 essays, however, which were written

by either Hamilton or Madison, is in dispute.
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To decide these authorships, Mosteller and Wallace (1963) carried out a statistical

study of word usage using the known writings of Hamilton and Madison. The words

they studied were non-contextual and therefore their rates of use was expected to

be nearly invariant under changes of topic. Examples of such words, called function

words, are articles, pronouns and prepositions, such as the, an, while, whilst, also,

upon, etc. Mosteller and Wallace then used the rates of word usage in the known

works of Hamilton and Madison to infer the authorship of the disputed papers. We

will briefly describe their methodology.

Mosteller and Wallace used Bayesian methods to analyze word usage. They as-

sumed word usage follows a Poisson distribution, and moreover assumed that word

occurrences are independent of each other. For example, consider the usage of the

word also. They assume the use of this word in an essay is adequately represented

by a Poisson distribution, with parameters 𝑤𝜇𝐻 and 𝑤𝜇𝑀 , where 𝑤 is essay length

in thousands of words, and the 𝜇’s are the rates per thousand for each of Hamilton

and Madison respectively. To illustrate, assume the rates are known to be 𝜇𝐻 = 0.25

and 𝜇𝑀 = 0.5. For a paper of length 𝑤 = 2 (i.e. 2000 words), Table 3.1 below gives

the probabilities for the usage of the word also by each author.

Suppose now that the word also occurs four times in a paper of 2000 words known

to have been written by either Hamilton or Madison. To evaluate the odds that the

paper was written by Hamilton, let 𝑝1 and 𝑝2 = 1− 𝑝1 be prior probabilities for the

hypothesis 1 and hypothesis 2, where hypothesis 1 is that Hamilton wrote the paper,

and hypothesis 2 is that Madison wrote it. Let 𝑓𝑖(𝑥), 𝑖 = 1, 2 be the conditional

probability of observing that the number of time the word also occurs is 𝑥, given that

hypothesis 𝑖 is true. From Bayes’ theorem,

Odds(1, 2∣𝑥) ≡ 𝑃 (hypothesis 1∣𝑥)
𝑃 (hypothesis 2∣𝑥) =

(
𝑝1
𝑝2

)(
𝑓1(𝑥)

𝑓2(𝑥)

)
(3.4)
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Table 3.1: Table for Poisson probabilities with 𝑤𝜇𝐻 = 0.5 and 𝑤𝜇𝑀 = 1.0.

Frequency Hamilton Madison

0 .607 .368

1 .303 .368

2 .0758 .184

3 .0126 .0613

4 .00158 .0153

5 .000158 .00307

6 .0000132 .000511

Adopted from Mosteller and Wallace (1963), p. 289.

which maybe interpreted as

Final odds = Initial odds× Likelihood ratio.

Next, we can extend equation (3.4) to more than one word count, say to words having

counts 𝑥1, . . . , 𝑥𝑛. Assuming independence among word occurrences, and taking the

logarithms leads to

log(final odds) = log(initial odds) +
𝑛∑

𝑖=1

log

(
𝑓1(𝑥𝑖)

𝑓2(𝑥𝑖)

)
. (3.5)

Under the Poisson model, this log-likelihood ratio equals

∑
𝑖

𝑥𝑖 log(𝜇𝑖𝐻/𝜇𝑖𝑀)− 𝑤(𝜇𝑖𝐻 − 𝜇𝑖𝑀)

where 𝜇𝑖𝐻 and 𝜇𝑖𝑀 have the obvious meanings and 𝑤 is document length in thousands

of words. Note that in (3.4) and (3.5) we are somewhat abusing notation by not

indicating the dependence of 𝑓1 and 𝑓2 on the specific words.

The initial odds 𝑝1/𝑝2 represent any prior beliefs about the authorship. For ex-

ample, if it seems very certain that Hamilton wrote the paper (say, 𝑝1 = 0.99 and
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𝑝2 = 0.01), then the initial odds for Hamilton would be 𝑝1/𝑝2 = 99. The likelihood

ratio would be 𝑓1(4)/𝑓2(4) ≈ 0.1, if it were based only on the word also, and so the

final odds are:

Odds(Hamilton, Madison∣𝑥 = 4) = 99× 0.1 = 9.9,

or about 10 to 1 in favour of Hamilton. If our prior belief concerning the authorship

is just a toss-up, then the authorship of the paper will just be the likelihood ratio, i.e.

10 to 1 in favour of Madison. Mosteller and Wallace argue that although the initial

odds do vary from person to person, for example, the prior beliefs held by different

historians, the strength of the data, as evidenced through the likelihood ratio factor,

would typically overwhelm most of the subjectivity in the initial odds. They state

that a likelihood ratio of 10−6, for example, would convert an initial odds of 103 for

Hamilton to final odds of 10−3 (i.e. 1000 to 1 for Madison). For this reason, Mosteller

and Wallace’s study was focused on methods for the evaluation of the likelihoods.

In computing the likelihood ratios, Mosteller and Wallace used the parameters

𝜇𝐻 and 𝜇𝑀 for the different words, but how those parameters are determined is an

important issue. Although at first there seem to be vast numbers of words on which to

base estimates – 94,000 written by Hamilton, and 114,000 by Madison, large sample

theory for estimating 𝜇𝐻 and 𝜇𝑀 does not work well since the occurrences of the

individual words are each relatively small. Moreover, we cannot be confident that the

rate of word usage remains constant from one paper to another. For that reason 𝜇𝐻

and 𝜇𝑀 are estimated using Bayesian method once again.

For each word, let

𝜎 = 𝜇𝐻 + 𝜇𝑀 and 𝜏 =
𝜇𝐻

𝜇𝐻 + 𝜇𝑀
. (3.6)

Note that 𝜎 essentially measures the average frequency of a word’s usage per 1000

words, and 𝜏 measures the word’s ability to discriminate. Mosteller and Wallace
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assumed that 𝜏 follows the Beta distribution 𝜏𝛾−1(1 − 𝜏)𝛾−1/B(𝛾, 𝛾) with equal ar-

guments 𝛾, and that 𝛾 = 𝛽1 + 𝛽2𝜎 with the 𝛽’s typically both being positive. Note

that an increase in 𝜎 implies a decrease in the variability of 𝜏 . The values of 𝛽1 and

𝛽2 were estimated from a data set of 90 function words chosen on the basis of having

either high or low frequency in the English language. For any particular word, the

distribution of its 𝜏 , based on the estimated parameters 𝛽1 and 𝛽2, is then used as

the prior for that word.

Let now 𝑥𝐻 and 𝑥𝑀 be the counts observed for a given word in each of the

combined known writings of Hamilton and Madison respectively. Following Bayes’

theorem, the posterior density of (𝜎, 𝜏) given 𝑥𝐻 and 𝑥𝑀 is,

𝜋(𝜎, 𝜏 ∣𝑥𝐻 , 𝑥𝑀) = 𝐶(𝑥𝐻 , 𝑥𝑀)𝜋(𝜎, 𝜏)𝑝(𝑥𝐻 , 𝑥𝑀 ∣𝜎, 𝜏)

where 𝐶 is a function of 𝑥𝐻 and 𝑥𝑀 , 𝜋(𝜎, 𝜏) is the prior density of (𝜎, 𝜏), and

𝑝(𝑥𝐻 , 𝑥𝑀 ∣𝜎, 𝜏) is the probability of observing the counts 𝑥𝐻 and 𝑥𝑀 given that the

parameters of the model are 𝜎 and 𝜏 . The goal is to evaluate the posterior density

𝜋(𝜎, 𝜏 ∣𝑥𝐻 , 𝑥𝑀) for each word and then to use the mode of this density in equation

(3.6) so as to determine estimates of the rates 𝜇𝐻 and 𝜇𝑀 for that word.

Returning to the also example, there were 26 counts out of 94,000 words in Hamil-

ton’s text, and 80 counts out of 114,000 words in Madison’s text of the word also with

corresponding true rates 𝜇𝐻 = 𝜎𝜏 and 𝜇𝑀 = 𝜎(1− 𝜏) per thousand words. Assuming

independence of word usage between Hamilton and Madison, the log-likelihood of

observing these counts under the Poisson distribution is:

log(𝑝(𝑥𝐻 , 𝑥𝑀 ∣𝜎, 𝜏)) = log(𝑝(𝑥𝐻 ∣𝜎, 𝜏)) + log(𝑝(𝑥𝑀 ∣𝜎, 𝜏))

= −94𝜎𝜏 + 26 log(94𝜎𝜏)− log(26!)

−114𝜎(1− 𝜏) + 80 log(114𝜎(1− 𝜏))− log(80!) .
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The logarithm of the prior density 𝜋(𝜎, 𝜏), where 𝜏 follows the Beta distribution

with equal parameters 𝛾, and where the values 𝛽1 = 10 and 𝛽2 = 0 are determined

from the data, is given by

log(𝜋(𝜎, 𝜏)) = log(𝜋(𝜏 ∣𝜎)) + log(𝜋(𝜎))

= constant + (10− 1) log(𝜏(1 − 𝜏)) .

The constant includes log(Beta(10, 10)) and a flat prior assigned to 𝜎. Finally, the

posterior density for (𝜎, 𝜏) is evaluated to be:

log(𝜋(𝜎, 𝜏 ∣𝑥𝐻 , 𝑥𝑀)) = constant− 94 + 114

2
𝜎 + (80 + 26) log(𝜎)

+(114− 94)𝜎(𝜏 − 1/2) + (26 + 10− 1) log(𝜏)

+(80 + 10− 1) log(1− 𝜏).

The mode of the above posterior gives �̂� = 0.99 and 𝜏 = 0.316, which implies �̂�𝐻 =

0.31 and �̂�𝑀 = 0.67. Since �̂�𝐻 and �̂�𝑀 are rates per thousand words, if we wish to

evaluate the likelihood ratio of Hamilton versus Madison in a paper of 2000 words

(the typical length of an essay in the disputed papers) for the word also, we multiply

both ratios by 2 and compute 𝑓(4∣0.62)/𝑓(4∣1.34) from the Poisson table.

Applying the log-odds (3.5) to the counts of the so-called function words from each

of the 12 disputed papers where �̂�𝐻 and �̂�𝑀 for each word are evaluated from the

known texts of Hamilton and Madison, Mosteller and Wallace computed the log-odds

for each of the disputed 12 papers.

Mosteller and Wallace also carried out their statistical study of the 12 disputed

papers assuming the counts of function words in the text follow negative binomial

distributions, although here we have only described the analysis when the word counts

were assumed to follow Poisson distributions. On the basis of both studies, Mosteller

and Wallace inferred that all 12 of the disputed papers were written by Madison.
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3.3 Some techniques from information retrieval

Information retrieval is the study of methods for finding or retrieving documents “rel-

evant” to a particular query or information request. Information retrieval can be di-

vided into three main areas of research1: content analysis, information structure, and

evaluation. Briefly, content analysis is concerned with describing the content of docu-

ments in a form suitable for computer processing. Information structure is concerned

with devising a retrieving strategy or methodology (by examining the relationships

between documents) so as to be able to effectively retrieve relevant documents. Eval-

uation is concerned with analyzing the effectiveness of a retrieving strategy. In this

thesis we will be mainly concerned with retrieval methods, and in particular with the

classification of documents by date, using (in one of our methods) algorithms based

on notions of similarity between documents (formal definitions will follow). Popular

measures of similarity that we will focus on are those based on vector space models. It

is worth pointing out that there are many measures of similarity between documents

(more than 60 according to McGill et al. (1975)), but the differences in retrieval

performance achieved between the different similarity measures tend to be relatively

insignificant (van Rijsbergen, C.J., (1979), p. 24).

Before we describe retrieval strategy models, we need to define some basic terms.

The reference used for this section and the next subsection is from Grossman and

Frieder (2004).

A word is defined as a string of nonblank characters which appear in the full

text of the document. A stop word is defined to be a word which occurs often in a

document but has no purpose for information retrieval purposes – for example, the,

a, for, and so on . A term is a sequence of words in a document. In the information

1See van Rijsbergen, (1979) p. 5.



Chapter 3. Some Previous Work on Text Analysis 28

retrieval literature however, term has a stricter definition. In addition to stop words,

suffixes and/or prefixes are also first removed from the words. Since in this thesis we

are developing dating algorithms which do not use knowledge about the language in

which the documents are written, we have chosen to stick to a loosely defined usage

of the word “term”. A query 𝒬 is a set of terms representing the user’s information

needs. We also assume that there is a finite set 𝐷1, 𝐷2, 𝐷3, . . . , 𝐷𝑛 of documents on

which the query search is performed. For our purposes, each query is just a document

from the DEEDS data set which we are trying to date, and the dates of the retrieved

documents will be used in one of our dating procedures.

3.3.1 Vector space models for documents

The vector space model, developed by Salton et al. (1975), involves representing doc-

uments as vectors. The vector is constructed by first assigning to each term – which

might be a single word or a longer phrase – a term weight, i.e. a quantitative measure

of the importance of that particular term (we will discuss shortly how term weight is

determined). The length of the vector is the number of distinct terms occurring in

the corpus of documents, and the coordinate points of the vector (for the document)

correspond to term weights of the distinct terms.

Once documents have vector representations, say of length 𝑘, similarity between

two documents is measured as follow. Let document 𝒟 be represented by the vector

{𝑑1, 𝑑2, . . . , 𝑑𝑘}, and let the query document 𝒬 be represented by the query vector

{𝑞1, 𝑞2, . . . , 𝑞𝑘} where 𝑑𝑖 (respectively 𝑞𝑖) is the weight of the (same) 𝑖th term in 𝒟
(respectively 𝒬). The next step is to define a function that measures the closeness

of these two vectors. Generally, this function is the inner product (or dot product),

essentially measuring the angle between the vectors, with the underlying premise
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being that if the query and the document are similar, then their vectors should be

pointing in the same general direction.

Term weights can be determined in a number ways. One could use:

1) the frequency of the 𝑖th term 𝑓𝑖 in a document (commonly known as term frequency

or tf for short)

2) the logarithm of the frequency of the term, say log(𝑓𝑖 + 1)

3) the value 𝑓𝑖 log(𝑁/𝑛𝑖) where N is the total number of documents in the collection,

and 𝑛𝑖 is the number of documents that contain the term 𝑖. The expression log(𝑁/𝑛𝑖)

is known as inverse document frequency (idf)

The quantity tf × idf, i.e., 𝑓𝑖 log(𝑁/𝑛𝑖), is perhaps the most widely used weight in

information retrieval. As we see in the tf × idf expression, when the 𝑖th term occurs

in most documents, that is when 𝑛𝑖 is close to 𝑁 , then the value of tf × idf is close to

zero, which is appropriate since the 𝑖𝑡ℎ term is then not really discriminating among

documents.

Example

In this example, we will use the term frequency (tf) as term weight. Let

𝒟 = “We like to hop on top of Pop”

𝒬 = “You must not hop on Pop”

We base the similarity measure between 𝒟 and 𝒬 on the angle-based cosine measure,

where the cosine of the angle between two documents (query 𝒬 and document 𝒟) is

given by:

sim𝐶(𝐷,𝑄) =

∑𝑚
𝑖=1 𝑑𝑖𝑞𝑖√∑𝑚

𝑖=1 𝑑
2
𝑖

√∑𝑚
𝑖=1 𝑞

2
𝑖

(3.7)

To measure the cosine angle between 𝒟 and 𝒬 based on term frequency, tf (where

term, in this illustration, will mean individual words), we begin with the set of the

union of words between 𝒟 and 𝒬: {we, like, to, hop, on, top, of, pop, you, must, not}.
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The tf vector representing 𝒟, denoted as 𝒟𝑡𝑓 , is the frequency of each of the words

of the above set in document 𝒟 itself. Therefore, 𝒟𝑡𝑓 = (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0).

Similarly, 𝒬𝑡𝑓 = (0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1). It follows that

sim𝐶(𝒟𝑡𝑓 ,𝒬𝑡𝑓 ) =
3√
8
√
6
= 0.43

The advantage of the cosine measure is that the lengths of the document and query

vectors are normalized. Had we used the inner product alone, longer documents would

likely be found to be more similar to the query simply because there is more chance

for the matching of terms to occur – and not because the longer document is actually

more relevant to the query. On the other hand, the normalization term creates its

own deficiencies. For example, if

𝒬′
= “We like to hop on top of Pop we like to hop on top of Pop”

then, using the frequency of the distinct words as the term weights,

sim𝐶(𝒟𝑡𝑓 ,𝒬′
𝑡𝑓 ) = 1.

Documents 𝒟 and 𝒬′
would now both be pointing in exactly the same direction

in document space, even though the document lengths differ. Zhang and Korfhage

(1999) have proposed methods of integrating angle similarity measures with distance

similarity measures in order to discriminate between documents that point in the

same directions but are however different due to their lengths.

3.3.2 Similarity measures between texts

We begin with set theoretic similarity measure initially used for query search purposes

in the context of the World Wide Web. It was originally suggested by Broder (1998).

Let 𝒟 be a document consisting of words in the order (𝑤1, 𝑤2, . . . , 𝑤𝑛), noting

that the words are not necessarily distinct. We define a shingle of size 𝑘 (or 𝑘-
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shingle) to mean a sequence 𝑠𝑘 of 𝑘 consecutive words from the document 𝒟, that

is 𝑠𝑘 = (𝑤𝑡+1, 𝑤𝑡+2, . . . , 𝑤𝑡+𝑘) where 0 ≤ 𝑡 ≤ 𝑛 − 𝑘. Define 𝑠𝑘(𝒟) to be the set of

all not necessarily distinct 𝑘-shingles of 𝒟, and define 𝒮𝑘(𝒟) to be the set of distinct

𝑘-shingles of 𝒟. The following is an example taken from Broder (1998) where the

shingle size is chosen to be 𝑘 = 2. If

𝒟 = (a rose is a rose is a rose)

then the set of all its 2-shingles is given by

𝑠2(𝒟) = {{a rose}, {rose is}, {is a}, {a rose}, {rose is}, {is a}, {a rose}}

and the set of distinct 2-shingles is given by

𝒮2(𝒟) = {{a rose}, {rose is}, {is a}} .

Once the shingle order 𝑘 has been fixed, Broder defines the resemblance of two

documents 𝒟1 and 𝒟2 as

𝑟𝑒𝑠𝑘(𝒟1,𝒟2) =
∥𝒮𝑘(𝒟1) ∩ 𝒮𝑘(𝒟2)∥
∥𝒮𝑘(𝒟1) ∪ 𝒮𝑘(𝒟2)∥ , (3.8)

where ∥ ∥ denotes the order of a finite set. Using this definition of resemblance, he

defines a distance between two documents to be

𝑑𝑖𝑠𝑘(𝒟1,𝒟2) = 1− 𝑟𝑒𝑠𝑘(𝒟1,𝒟2) ;

as noted by Broder (1998), this distance measure is actually a metric, i.e. it satisfies

the triangle inequality.

The angle-based and the set theoretic similarity measures discussed above can be

viewed as being special cases of a class of correspondences or measures of document

resemblance, the formal definition of which we will discuss next. This material is

based on Feuerverger, Hall, Tilahun and Gervers (2005,2008).
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Let 𝑛(𝑖) and 𝑛(𝑗) denote the number of words of 𝒟𝑖 and 𝒟𝑗, respectively. In this

notation, 𝒟𝑖 = (𝜔1, 𝜔2, . . . , 𝜔𝑛(𝑖)). Let N(𝑖, 𝑗) denote the order of the set 𝒮𝑘(𝒟𝑖) ∪
𝒮𝑘(𝒟𝑗). For each 𝑙, 1 ≤ 𝑙 ≤ N(𝑖, 𝑗), 𝜈𝑙(𝑖, 𝑗) denotes the number of times the 𝑙th

element of 𝒮𝑘(𝒟𝑖)∪ 𝒮𝑘(𝒟𝑗) occurs in 𝑠𝑘(𝒟𝑖). Denote the numbers of (not necessarily

distinct) shingles of order 𝑘 of 𝒟𝑖 and 𝒟𝑗 by 𝑁(𝑖) and 𝑁(𝑗), respectively. It follows

that 𝑁(𝑖) =
∑

𝑙 𝜈𝑙(𝑖, 𝑗) = ∣∣𝑠𝑘(𝒟𝑖)∣∣ = 𝑛(𝑖)−𝑘+1 and 𝑁(𝑗) =
∑

𝑙 𝜈𝑙(𝑗, 𝑖) = ∣∣𝑠𝑘(𝒟𝑗)∣∣ =
𝑛(𝑗)− 𝑘 + 1. (Here, the dependence of 𝑁(𝑖) and 𝑁(𝑗) on 𝑘 has been suppressed).

Let 𝑓(𝑢, 𝑣) be a bivariate, non-negative function. Define the 𝑘th order correspon-

dence between the documents 𝒟𝑖 and 𝒟𝑗 to be

corr𝑘(𝑖, 𝑗) =

∑𝑁(𝑖,𝑗)
𝑙=1 𝑓 (𝜈𝑙(𝑖, 𝑗), 𝜈𝑙(𝑗, 𝑖))

𝐹
{
𝜈1(𝑖, 𝑗), ⋅ ⋅ ⋅ , 𝜈𝑁(𝑖,𝑗)(𝑖, 𝑗); 𝜈1(𝑗, 𝑖), ⋅ ⋅ ⋅ , 𝜈𝑁(𝑗,𝑖)(𝑗, 𝑖)

}
where we choose a normalizing function 𝐹 (a function of two vector arguments) which

has the property that for all documents 𝒟𝑖 and 𝒟𝑗 the following two conditions are

satisfied:

(a) 0 ≤ corr𝑘(𝑖, 𝑗) ≤ 1

and

(b) corr𝑘(𝑖, 𝑗) = 1 whenever 𝒟𝑖 = 𝒟𝑗.

The correspondence distance associated with the correspondence corr𝑘(𝑖, 𝑗) is then

defined to be:

𝑑𝑘(𝑖, 𝑗) = 1− corr𝑘(𝑖, 𝑗).

As we shall see below, 𝑑𝑘(⋅, ⋅) does not always turn out to be a metric.

Examples of correspondences

Type (I):

𝑓(𝑢, 𝑣) = 𝑢𝛼𝑣𝛼 and

𝐹 (�⃗�, �⃗�) = 𝐹 (𝑢1, ⋅ ⋅ ⋅ , 𝑢𝑁(𝑖,𝑗), 𝑣1, ⋅ ⋅ ⋅ , 𝑣𝑁(𝑖,𝑗)) =

⎛⎝𝑁(𝑖,𝑗)∑
𝑙=1

𝑢2𝛼𝑙

⎞⎠1/2⎛⎝𝑁(𝑖,𝑗)∑
𝑙=1

𝑣2𝛼𝑙

⎞⎠1/2
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for an 𝛼 such that 0 < 𝛼 <∞.

Type (II):

𝑓(𝑢, 𝑣) = 𝑢𝛼𝑣𝛼 and

𝐹 (�⃗�, �⃗�) =
𝑁(𝑖,𝑗)∑
𝑙=1

(𝑢2𝛼𝑙 + 𝑣2𝛼𝑙 − 𝑢𝛼𝑙 𝑣𝛼𝑙 )

for an 𝛼 such that 0 < 𝛼 <∞.

Type (III):

𝑓(𝑢, 𝑣) = 𝐼(𝑢 > 0, 𝑣 > 0) and

𝐹 (�⃗�, �⃗�) =
𝑁(𝑖,𝑗)∑
𝑙=1

(
𝐼(𝑢𝑙>0) + 𝐼(𝑣𝑙>0) − 𝐼(𝑢𝑙>0)𝐼(𝑣𝑙>0)

)

Type (IV):

𝑓(𝑢, 𝑣) = min(𝑢, 𝑣) and

𝐹 (�⃗�, �⃗�) = min

⎛⎝𝑁(𝑖,𝑗)∑
𝑙=1

𝑢𝑙,
𝑁(𝑖,𝑗)∑
𝑙=1

𝑣𝑙

⎞⎠ = min(𝑁(𝑖), 𝑁(𝑗)).

All of the correspondences of types (I) to (IV) satisfy the conditions (a) and (b).

The angle based document similarity which we defined at (3.7), for example, is a type

(I) correspondence with 𝛼 = 1. If we take 𝛼 = 1/2 in (I), we obtain a correspondence

which Quang et al. (1999) term “Hellinger similarity”. Specifically, letting

𝜋𝑙 =
𝑢𝑙∑

1≤𝑙≤𝑁(𝑖,𝑗) 𝑢𝑙
and 𝜉𝑙 =

𝑣𝑙∑
1≤𝑙≤𝑁(𝑖,𝑗) 𝑣𝑙

,

the resulting correspondence distance may be written as

𝑑𝑘(𝑖, 𝑗) = 1− ∑
1≤𝑙≤𝑁(𝑖,𝑗)

√
𝜋𝑙𝜉𝑙.

It can be easily verified that

√
𝑑𝑘(𝑖, 𝑗) =

⎛⎝1− ∑
1≤𝑙≤𝑁(𝑖,𝑗)

√
𝜋𝑙𝜉𝑙

⎞⎠1/2

=

⎛⎝1

2

∑
1≤𝑙≤𝑁(𝑖,𝑗)

[√
𝜋𝑙 −

√
𝜉𝑙

]2⎞⎠1/2
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and that the square root of the Hellinger correspondence distance is actually a metric.

If 𝑢 and 𝑣 were discrete probability distributions rather than counts, then this would

just be the standard Hellinger distance for multinomials.

A shortcoming of correspondences of type (I) is that in general, the associated

correspondence distances do not satisfy the triangle inequality, and so do not define a

metric. As a counterexample, let �⃗� = (1, 0), �⃗� = (1, 1), and �⃗� = (0, 1), and consider

the distances between �⃗� and �⃗�, and �⃗� and �⃗�. This example shows that the angle

based difference measure (which is of type (I)) is not a metric.

Comparing type (I) correspondence to type (II), we see that the only difference is

in the normalization function 𝐹 , so that the main geometric aspect of the relationship

remains the same. Furthermore, the value of 𝐹 in type (I) does not exceed that for

type (II) (which can be seen by an application of the Cauchy-Schwartz inequality),

and therefore the correspondence distance for type (I) is always smaller than or equal

to that for type (II). An advantage of the type (II) correspondence distances is the

fact that they are metrics for all values of 𝛼, (0 < 𝛼 <∞); in particular, the triangle

inequality is preserved. For a proof, see Feuerverger, Hall, Tilahun, Gervers (2004).

The Broder resemblance measure (3.8) is an instance of a correspondence measure

of type (III); in fact type (III) correspondence, and hence the resemblance measure,

can be interpreted as the limit (as 𝛼 ↓ 0) of measures of type (II). Unlike the type

(III) correspondence distance, type (II) allows us to choose a continuously variable

range of distance measures through the selection of 𝛼. The values of 𝛼 can be chosen

to, in effect, allow different weightings to apply to the shingle counts 𝜈𝑙(𝑖, 𝑗). As a

limit, type (III) ignores the actual shingle counts and only considers the presence or

absence of a particular shingle.

The type (IV) correspondence distance is related to the so-called variation, or 𝐿1

distance. The variation distance between two discrete distributions 𝑝 = (𝑝1, ⋅ ⋅ ⋅ , 𝑝𝑛)
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and 𝑞 = (𝑞1, ⋅ ⋅ ⋅ , 𝑞𝑛) is given by:

dist𝑉 (𝑝, 𝑞) =
𝑛∑

𝑖=1

∣𝑝𝑖 − 𝑞𝑖∣ = 2− 2
𝑛∑

𝑖=1

min(𝑝𝑖, 𝑞𝑖).

(The above equality can be obtained if we note that ∣𝑝𝑖−𝑞𝑖∣ = max(𝑝𝑖, 𝑞𝑖)−min(𝑝𝑖, 𝑞𝑖),

𝑝𝑖 + 𝑞𝑖 = max(𝑝𝑖, 𝑞𝑖) +min(𝑝𝑖, 𝑞𝑖) and
∑
𝑞𝑖 =

∑
𝑝𝑖 = 1). If we define 𝑝𝑙 = 𝑣𝑙(𝑖, 𝑗)/N(𝑖)

and 𝑞𝑙 = 𝑣𝑙(𝑗, 𝑖)/N(𝑗), the frequency of the 𝑙th shingle occurrence in documents 𝒟𝑖 and

𝒟𝑗 respectively, then the type (IV) correspondence distance for shingle frequencies is

given by:

𝑑𝑘(𝑖, 𝑗) = 1−
∑

𝑙 min(𝑝𝑙, 𝑞𝑙)

min(
∑

𝑙 𝑝𝑙,
∑

𝑙 𝑞𝑙)
= 1−

𝑁(𝑖,𝑗)∑
𝑙=1

min(𝑝𝑙, 𝑞𝑙) =
1

2
dist𝑉 (𝑝, 𝑞).

Again, unlike the type (II) correspondences, type (IV) lacks a parameter with which

we can assign different weights to shingle counts 𝜈𝑙(𝑖, 𝑗).

We remark that the geometric aspects of the relationship between the type (I) and

(II) correspondence distances is preserved but with the added advantage that the type

(II) correspondence distance are metrics, and therefore the meaning of “distance” with

the type (II) correspondence distances is intuitively more appealing. In that sense,

type (II) is regarded as being preferable to type (I).

In summary, we see that the most commonly used type (I) correspondence distance

differs from type (II) only in the normalization factor used. Type (II) is also preferable

to types (III) or (IV) since the later two types of correspondences lack parameters

which allow them to assign differing weights to the shingle counts.

There is precedence in the use of distance measure functions in the field of infor-

mation retrieval. As mentioned already, Broder (1998) has applied type (III) corre-

spondence distance measure for query search in the context of the World Wide Web.

In the field of colour-based image retrieval, conventional distance functions such as

𝐿1, 𝐿2 and 𝐿∞ have found applications. See, for example, Stehling, Nascimento and
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Falcão (2003). Other types of distance measures in the context of, for example, video

image and audio-based retrieval techniques are further discussed in Djeraba (2003).

In the field of vector space based information retrieval techniques, methods are

used to retrieve documents that more than just literal match to a query term. Meth-

ods in this direction employ the use of various matrix decomposition techniques to a

sparse, term-by-document matrices. For detailed developments in this area, see Berry

and Browne (2005).

3.3.3 Evaluation

Once we have chosen a document retrieval strategy, the next step is to evaluate its

effectiveness. When a query is submitted to a system, a number of documents from

the collection are retrieved, some of which are considered relevant. The relevance

of a document must typically be determined by human experts in the discipline of

the document. An underlying assumption in such evaluations is that if a given re-

trieving strategy fares well under experimental conditions, then it is likely to perform

favourably under the real world situation. In a perfect system, the number of retrieved

and relevant documents would be identical, but in reality, systems typically retrieve

many non-relevant documents. To measure the effectiveness of retrieval strategies,

two ratios, recall and precision may be computed. These are defined as:

precision =
number of relevant documents retrieved

number of retrieved documents

recall =
number of relevant documents retrieved

number of relevant documents
.

A 100% recall value can of course be achieved by simply retrieving all of the documents

in the collection. Precision however would control for the system’s inefficiency by

evaluating how many of the retrieved documents are actually relevant.
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The assessment of recall and precision can be complicated since most systems only

rank their document collection with respect to a query (using document similarity

measures, for instance). There are then two approaches taken to compute precision

and recall values. The first method specifies a fixed number of documents for each

query and then determines the average precision and recall scores over a set of queries.

The second method specifies a set of recall values, and for each recall value, the

average precision score is computed over a set of queries. The latter method gives

rise to what is known in the literature as a precision-recall curve. Comparing two

retrieval strategies using their precision-recall curves is difficult since, for instance,

the first method can outperform the second one at the high and low values of recall,

whereas the second method can outperform the first for moderate recall values.

The performances of different retrieval strategies can be tested on a U.S. government-

sponsored database known as TREC (Text REtrieval Conference). This database

consists of document sets for both training purposes as well as for testing purposes.

These document sets are also accompanied by a set of queries (known as ‘topics’ in

TREC) as well as by relevance judgements.

3.4 Some further recent literature

Forman (2006) provides an explorative study for text classification problems where

the features of the data change over time. Sharan and Neville (2007) explore “time-

varying relationships in statistical relational models” where they provide an appli-

cation to text classification. They also mention, as a potential application, the case

of fraud detection, whereby it would be informative to find out who is working with

whom, as well as the pattern of communication over time among suspects.

Zhao et al. (2009) model the frequencies of occurrences of words across time in
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time-stamped documents using local logistic regression. Apparently, unaware of the

results of Fan et al. (1995), their method is actually a special case of locally constant

logistic regression. The theoretical framework in the work of Fan et al. (1995) will

provide a basis for our work in modelling the probabilities of occurrences of words in

Chapter 6. The model we will propose can handle the problems of edge biases and can

be generalized to higher degrees of the local polynomial of the kernel regression. We

note that asymptotic results, such as bias, variance and distribution of the estimators

are readily available for local polynomial fitting and also that they are superior for

polynomials of odd degree.



Chapter 4

Relevant Statistical Tools

The key techniques that we discuss in this chapter are non-parametric regression

and local smoothing in generalized linear models. Non-parametric regression, and in

particular its GLM local smoothing versions, will be used extensively in our work

on the maximum prevalence method for dating documents in Chapter 6. Choosing

optimal bandwidths for such procedures will also be important for us, so for this

reason we will emphasize those details in our discussions in the present chapter. Our

main references for this chapter are Härdle, W. (1990, 1991), Simonoff, J. (1996), Fan

and Gijbels (1996, 2000), Sarda and Vieu (2000), Schimek (2000), Silverman (1986)

and Wand and Jones (1995).

The techniques and results from kernel density estimation theory form a foun-

dation for the developments reviewed in this chapter. A discussion of the relevant

theory of kernel density estimation is provided in Appendix A.

This chapter is a self-contained background material. Those familiar with the

materials in this chapter can go straight to Chapter 5 and Chapter 6, the chapters

containing the main contributions of this thesis.

39
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4.1 Non-parametric regression

The goal of a regression curve is to fit a relationship between an explanatory variable

𝑋 and an output variable 𝑌 . Suppose we have bivariate i.i.d. data (𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛),

and we wish to estimate the function 𝑚(𝑥) = 𝐸(𝑌 ∣𝑋 = 𝑥) assuming a model of the

form

𝑌 = 𝑚(𝑋) + 𝜎(𝑋)𝜖

with 𝐸(𝜖) = 0 and Var(𝜖) = 1, where 𝑋 and 𝜖 are independent. We will let 𝑓 denote

the density of the random variables 𝑋1, . . . , 𝑋𝑛.

In nonparametric regression curve estimation, we are basically interested in a

weighted average of the response 𝑌 within a certain neighbourhood of 𝑥. We weight

each observation 𝑌𝑖 depending on the distance of 𝑋𝑖 to 𝑥. We then estimate the value

of 𝑚(𝑥) as

�̂�ℎ(𝑥) = 𝑛
−1

𝑛∑
𝑖=1

𝑤ℎ𝑖(𝑥;𝑋1, . . . , 𝑋𝑛)𝑌𝑖

where 𝑤ℎ𝑖(⋅) is a weight function which depends on the particular kernel estimation

technique being used, and on the distance between 𝑥 and the explanatory variables

𝑋, and where ℎ is a smoothing parameter. The goal is to determine which choice of

weight function and smoothing parameter are most appropriate to our data.

4.1.1 The Nadaraya-Watson regression estimator

One of the earliest and most common of the nonparametric regression estimators is

the Nadaraya-Watson estimator. Introduced by Nadaraya (1964) and Watson (1964),

the Nadaraya-Watson estimate traces its origin to the so-called regressogram. The

regressogram is for regression estimation what the histogram is for density estimation.

The set of values of 𝑋 are partitioned into 𝐽 subintervals, denoted by 𝐵𝑗, and the
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average value of the 𝑌 ’s are taken using these 𝐵𝑗 intervals. The resulting regression

estimate is a step-function, defined for any 𝑥 ∈ 𝐵𝑗 by

�̂�𝑗(𝑥) =

∑𝑛
𝑖=1 𝑌𝑖𝐼(𝑋𝑖 ∈ 𝐵𝑗)∑𝑛
𝑖=1 𝐼(𝑋𝑖 ∈ 𝐵𝑗)

.

A natural way to extend the regressogram is to introduce a window-based estimate

where the values of the 𝑌 ’s are locally averaged, i.e., in which the averaging that takes

place is centered at the point 𝑥. More precisely, for any 𝑥, we define the estimator

�̂�ℎ(𝑥) =

∑𝑛
𝑖=1 𝑌𝑖𝐼(𝑋𝑖 ∈ [𝑥− ℎ, 𝑥+ ℎ])∑𝑛
𝑖=1 𝐼(𝑋𝑖 ∈ [𝑥− ℎ, 𝑥+ ℎ]) .

The Nadaraya-Watson estimate uses a kernel weight function 𝐾, generalizing the

second estimator. The kernel function 𝐾 is a continuous, bounded and a symmetric

real function satisfying the condition

∫ ∞

−∞
𝐾(𝑥)𝑑𝑥 = 1 .

Define the kernel 𝐾ℎ(𝑢) = ℎ−1𝐾(𝑢/ℎ) with scale factor ℎ called bandwidth. The

Nadaraya-Watson estimator is defined as

�̂�ℎ(𝑥) =
𝑛−1

∑𝑛
𝑖=1 𝑌𝑖𝐾ℎ(𝑋𝑖 − 𝑥)

𝑛−1
∑𝑛

𝑖=1𝐾ℎ(𝑋𝑖 − 𝑥) , provided
𝑛∑

𝑖=1

𝐾ℎ(𝑋𝑖 − 𝑥) ∕= 0,

and equals zero otherwise. The weight function corresponding to this estimator is

given by

𝑤ℎ𝑖(𝑥) =
1
ℎ
𝐾(𝑋𝑖−𝑥

ℎ
)

𝑓ℎ(𝑥)
(4.1)

where

𝑓ℎ(𝑥) =
1

𝑛

𝑛∑
𝑖=1

𝐾ℎ(𝑋𝑖 − 𝑥)

is the kernel density estimate for 𝑓(𝑥) (for reference, see Appendix A). Hereafter

�̂�ℎ(𝑥) will denote the Nadaraya-Watson estimator. As pointed out by Härdle (1991),
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some properties which follow from the definition of the Nadaraya-Watson estimator

are:

a) The estimator �̂�ℎ(𝑥) is continuous if we choose a continuous kernel.

b) Observations 𝑌𝑖 are weighted more in areas where the corresponding 𝑋𝑖’s are

sparse but effectively fewer 𝑌𝑖’s are used in the averaging.

c) If ℎ → ∞, the weight 𝑤ℎ𝑖(𝑥) → 1, and the estimate �̂�ℎ(𝑥) → 𝑌 . Thus

large bandwidths lead to oversmoothing. If ℎ → 0, then the weight 𝑤ℎ𝑖(𝑥) → 𝑛

if 𝑥 = 𝑋𝑖, and becomes undefined for all other values of 𝑥. Therefore, �̂�ℎ(𝑋𝑖) →
𝑌𝑖𝐾(0)/𝐾(0) = 𝑌𝑖 as ℎ→ 0; that is, small bandwidths result in data interpolation.

If the predictors 𝑋𝑖 are random and have an unknown density, then the Nadaraya-

Watson kernel estimator is the most natural one to use. If the density function of the

predictors, 𝑓𝑋(𝑥), is known, then the weight

𝑤ℎ𝑖(𝑥) =
ℎ−1𝐾(𝑋𝑖−𝑥

ℎ
)

𝑓𝑋(𝑥)
(4.2)

is preferable. For example, if the random variables are observations taken at some

regular intervals (assume without loss of generality that the observations lie in [0, 1]),

then we may think of the observations as being drawn from a uniform distributions

on [0, 1] and we would take 𝑓 = 𝐼[0,1].

If the predictors, on the other hand, are not random but, say, are a fixed set of

nearly equally spaced ordered numbers 𝑥1, . . . , 𝑥𝑛, then without loss of generality, we

can assume that the 𝑥 observations lie in the unit interval [0, 1]. We then use the

weight (4.2), but we take the estimate of the “density” of 𝑓𝑋(𝑥) to be

𝑓𝑋(𝑥) =
1

𝑛(𝑥𝑖 − 𝑥𝑖−1) for 𝑥 ∈ (𝑥𝑖−1, 𝑥𝑖]

since 𝑥𝑖 − 𝑥𝑖−1 ≈ 1/𝑛. More generally, substituting this form into equation (4.1), we
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obtain a kernel estimator due to Priestley and Chao (1972), namely,

�̂�𝑃𝐶(𝑥) = ℎ
−1

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥𝑖−1)𝐾
(
𝑥𝑖 − 𝑥
ℎ

)
𝑌𝑖

where 𝑥0 = 0.

An estimator for the case when the predictors are ordered, but not necessarily

equally spaced, was given by Gasser and Müller (1979):

�̂�𝐺𝑀(𝑥) =
𝑛∑

𝑖=1

𝑌𝑖

∫ 𝑠𝑖

𝑠𝑖−1

𝐾ℎ(𝑢− 𝑥)𝑑𝑢

where 𝑠𝑖 = 1
2
(𝑋𝑖 + 𝑋𝑖+1), 𝑋0 = −∞, 𝑋𝑛+1 = +∞. We note here that from a

function approximation point of view, the Nadaraya-Watson and the Gasser and

Müller estimators are both solutions to the locally constant least squares regression

problem given by

𝜃 = argmin
𝜃

𝑛∑
𝑖=1

(𝑌𝑖 − 𝜃)2𝑤𝑖 .

When 𝑤𝑖 = 𝐾ℎ(𝑋𝑖 − 𝑥) and 𝑤𝑖 =
∫ 𝑠𝑖
𝑠𝑖−1
𝐾ℎ(𝑢− 𝑥)𝑑𝑢, we obtain the Nadaraya-Watson

and the Gasser-Müller estimators respectively. Asymptotically, the variances of �̂�𝐺𝑀

and �̂�𝑃𝐶 are 1.5 time bigger than the variance of the Nadaraya-Watson estimator,

but on the other hand, their biases are smaller. Also, comparatively, the bias form

of the Nadaraya-Watson estimator is more complicated. For further details, see Fan

and Gijbels (1996, p. 17).

4.1.2 Properties of the Nadaraya-Watson estimator

In this section, we examine some properties of the Nadaraya-Watson estimator. Let

the kernel 𝐾(𝑥) be an arbitrary density function satisfying the conditions:

(a) sup
−∞<𝑥<∞

𝐾(𝑥) <∞.

(b) lim
∣𝑥∣→∞

∣𝑥∣𝐾(𝑥) = 0.
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(c) 𝐾(𝑥) = 𝐾(−𝑥).

(d) 𝑥2𝐾(𝑥) ∈ 𝐿1(−∞,∞).

One of the ways to measure the closeness of �̂�ℎ(𝑥) to the true regression curve

𝑚(𝑥) is to study its mean-squared error. Assume 𝐸𝑌 2
𝑖 <∞, and that 𝑚(𝑥), 𝑓(𝑥) and

𝑓(𝑥)𝐸(𝑌 2∣𝑋 = 𝑥) are continuous, with 𝑓(𝑥) > 0. Using similar methods as those

used to calculate the mean-squared error for density estimates, we have the following

result (for details, see Härdle (1991) p. 135):

If 𝑚(𝑥) is twice differentiable, then

𝑀𝑆𝐸(�̂�ℎ(𝑥)) =
1

𝑛ℎ

𝜎2(𝑥)

𝑓(𝑥)
∣∣𝐾∣∣22 +

ℎ4

4

(
𝑚′′(𝑥) + 2

𝑚′(𝑥)𝑓 ′(𝑥)
𝑓(𝑥)

)2

𝜇22(𝐾)

+ 𝑜((𝑛ℎ)−1) + 𝑜(ℎ4), as ℎ→ 0, 𝑛ℎ→ ∞

where 𝜎2(𝑥) = Var(𝑌 ∣𝑋 = 𝑥). Dropping the order terms, we define the 𝐴𝑀𝑆𝐸

(asymptotic MSE)

𝐴𝑀𝑆𝐸(�̂�ℎ(𝑥)) =
1

𝑛ℎ

𝜎2(𝑥)

𝑓(𝑥)
∣∣𝐾∣∣22

+
ℎ4

4

(
𝑚′′(𝑥) + 2

𝑚′(𝑥)𝑓 ′(𝑥)
𝑓(𝑥)

)2

𝜇22(𝐾) . (4.3)

Here 𝜇2(𝐾) =
∫∞
−∞ 𝑠

2𝐾(𝑠)𝑑𝑠. As Härdle (1991) points out, there are several points

to notice regarding the 𝐴𝑀𝑆𝐸(�̂�ℎ(𝑥)):

a) �̂�ℎ(𝑥) → 𝑚(𝑥) in probability as ℎ → 0 and 𝑛ℎ → ∞ – that is, �̂�ℎ(𝑥) is a

consistent estimator of 𝑚(𝑥).

b) The first term on the right of equation (4.3) describes the asymptotic variance

of �̂�ℎ(𝑥). It is a function of the density 𝑓(𝑥) and the conditional variance of the

response 𝑌 given the particular value of 𝑥. Note that if we are in a region of sparse

data, 𝑓(𝑥) decreases, resulting in higher variance of �̂�ℎ(𝑥). The opposite is true if

we are in a region with a high concentration of data; thus if we are in a region with
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plenty of data, the regression curve will be more stable, i.e., smoother.

c) The second term on the right in equation (4.3) is the square of the bias of �̂�ℎ(𝑥).

Near a local extremum, the bias term will be dominated by 𝑚′′(𝑥) and near an

inflection point of 𝑚(𝑥), it will be dominated by 𝑚′(𝑥).

d) The optimal value of the bandwidth ℎ (i.e. one that minimizes 𝐴𝑀𝑆𝐸(�̂�ℎ(𝑥))) is

given by

ℎ𝑎𝑚𝑠𝑒 = 𝑛
−1/5

(
𝑐1
𝑐2

)1/5
where 𝑐1 = {𝜎2(𝑥)/𝑓(𝑥)}∣∣𝐾∣∣22, and 𝑐2 =

(
𝑚′′(𝑥) + 2𝑚′(𝑥)𝑓 ′(𝑥)

𝑓(𝑥)

)2
𝜇22(𝐾).

Similar to the draw-backs we encountered when examining the properties of the

ℎ𝑎𝑚𝑠𝑒 for the kernel density estimate (refer to Appendix A), we find that the ℎ𝑎𝑚𝑠𝑒

for the Nadaraya-Watson estimate is dependent on 𝑥 as well as on the unknown func-

tions 𝑚(⋅) and 𝑓(⋅). Methods for finding the optimal bandwidths for non-parametric

regression are deferred to a subsequent section.

4.1.3 Local polynomial regression

We begin by considering the Nadaraya-Watson regression estimate from a local poly-

nomial approximation point of view. If we assume the existence of the (𝑝 + 1)𝑠𝑡

derivative of the mean function 𝑚(𝑢), then Taylor expanding of 𝑚(𝑢) in a neighbour-

hood of 𝑥 we obtain

𝑚(𝑢) ≃ 𝑚(𝑥) +𝑚′(𝑥)(𝑢− 𝑥) + 𝑚
′′(𝑥)
2!

(𝑢− 𝑥)2 + ⋅ ⋅ ⋅+ 𝑚
𝑝(𝑥)

𝑝!
(𝑢− 𝑥)𝑝.

Letting 𝛽𝑗 = 𝑚(𝑗)(𝑥)
𝑗!

(and thus suppressing the dependence of 𝛽 on 𝑥), we now fit

this polynomial locally by weighted least square regression. This involves solving the

minimization problem

min
𝛽

𝑛∑
𝑖=1

⎛⎝𝑌𝑖 − 𝑝∑
𝑗=0

𝛽𝑗(𝑋𝑖 − 𝑥)𝑗
⎞⎠2

𝐾ℎ (𝑋𝑖 − 𝑥) (4.4)
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where 𝐾ℎ(⋅) = 1
ℎ
𝐾( ⋅

ℎ
) is a kernel function that assigns a weight to each data point,

and ℎ is a bandwidth that controls the size of the local neighbourhood.

Framing the above problem in matrix notation, let

X𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 (𝑋1 − 𝑥) ⋅ ⋅ ⋅ (𝑋1 − 𝑥)𝑝
...

...
...

1 (𝑋𝑛 − 𝑥) ⋅ ⋅ ⋅ (𝑋𝑛 − 𝑥)𝑝

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and let

Y =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑌1
...

𝑌𝑛

⎞⎟⎟⎟⎟⎟⎟⎠ , and 𝛽 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝛽1
...

𝛽𝑛

⎞⎟⎟⎟⎟⎟⎟⎠ .

Also, letting W𝑥 be the 𝑛× 𝑛 diagonal matrix

W𝑥 = diag [𝐾ℎ (𝑋1 − 𝑥) , . . . , 𝐾ℎ (𝑋𝑛 − 𝑥)] ,

the least squares problem (4.4) may be written as

min
𝛽

(Y −X𝑥𝛽)
𝑇W𝑥(Y −X𝑥𝛽) (4.5)

where 𝛽 = {𝛽0, ⋅ ⋅ ⋅ , 𝛽𝑝}𝑇 . When X𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎝
1

...

1

⎞⎟⎟⎟⎟⎟⎟⎠, and 𝛽 = (𝛽0), then the above least

squares problem becomes merely

min
𝛽0

𝑛∑
𝑖=1

(𝑌𝑖 − 𝛽0)2𝐾ℎ(𝑋𝑖 − 𝑥)

for which the resulting minimizer, 𝛽0, is just the Nadaraya-Watson estimator. Since

the Nadaraya-Watson estimator thus results when the polynomial order is 𝑝 = 0, it

is also referred to as the locally constant estimator.

In general, if X𝑇
𝑥W𝑥X𝑥 is invertible, then

𝛽 = (X𝑇
𝑥W𝑥X𝑥)

−1X𝑇
𝑥W𝑥Y.
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Letting �̂�𝑝(𝑥) denote the estimate of 𝑚(𝑥) based on the 𝑝𝑡ℎ polynomial order, �̂�𝑝(𝑥)

is taken simply as the intercept term 𝛽0 in that model. In matrix notation, we have

�̂�𝑝(𝑥) = e𝑇1 (X
𝑇
𝑥W𝑥X𝑥)

−1X𝑇
𝑥W𝑥Y (4.6)

where e𝑇𝑟 is a 1×(𝑝+1) vector having the value 1 at the 𝑟𝑡ℎ entry and zero everywhere

else. More generally, the estimate of the 𝜈𝑡ℎ derivative of 𝑚(𝑥) based on the 𝑝𝑡ℎ

polynomial order is given by

𝑚
(𝜈)
𝑝 (𝑥) = 𝜈!× 𝛽𝜈 = 𝜈!e𝑇𝜈+1(X

𝑇
𝑥W𝑥X𝑥)

−1X𝑇
𝑥W𝑥Y.

From equation (4.6) one can see that problems can arise if X𝑇
𝑥W𝑥X𝑥 is not invert-

ible. However, in the case that the predictors are fixed and assumed to be distinct,

by taking ℎ to be large enough invertibility can generally be guaranteed.

4.1.4 Some properties of local polynomial estimators

In this section we describe the bias and variance for the local polynomial regression

estimator �̂�𝑝(𝑥) for the cases of polynomial order 𝑝 = 0 and 𝑝 = 1. Assume, without

loss of generality, that the support of the design density 𝑓(𝑥) is bounded and coincides

with [0, 1]. Also, without loss of generality, assume the support of the kernel 𝐾 to be

[−1, 1]. Then, the support of 𝐾ℎ(𝑥− ⋅) will be ℰ𝑥,ℎ = {𝑧 : ∣𝑧 − 𝑥∣ ≤ ℎ}. We will call

𝑥 an interior point if ℰ𝑥,ℎ ⊂ supp(𝑓), and a boundary point otherwise. Thus, 𝑥 is a

boundary point if and only if 𝑥 = 𝛼ℎ or 𝑥 = 1− 𝛼ℎ for some 0 ≤ 𝛼 < 1. Essentially,

this means that the weight of the kernel will “spill” outside of the support of 𝑓 .

Furthermore, 𝑥 is an interior point if and only if ℎ ≤ 𝑥 ≤ 1− ℎ.
Some further notation we need is as follows: let

𝜇𝑗(𝐾) =
∫
𝑢𝑗𝐾(𝑢)𝑑𝑢, and 𝜈𝑗(𝐾) =

∫
𝑢𝑗𝐾2(𝑢)𝑑𝑢 .
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Also, let N𝑝 be an (𝑝+1)×(𝑝+1) matrix having the (𝑖, 𝑗)th entry equal to 𝜇𝑖+𝑗−2(𝐾)

and let M𝑝(𝑢) be the same as N𝑝 but with the first column replaced by (1, 𝑢, ⋅ ⋅ ⋅ , 𝑢𝑝).
Define 𝐾(𝑝) to be the (𝑝+ 1)th order kernel function, that is,∫

𝐾(𝑢)𝑑𝑢 = 1,
∫
𝑢𝑟𝐾(𝑢)𝑑𝑢 = 0, 𝑟 = 1, . . . , 𝑝,

∫
𝑢𝑝+1𝐾(𝑢)𝑑𝑢 ∕= 0.

We can construct a higher 𝑝+ 1 order kernel from the kernel 𝐾 using the formula

𝐾(𝑝)(𝑢) =
∣M𝑝(𝑢)∣
∣N𝑝∣ 𝐾(𝑢) ,

where ∣ ⋅ ∣ means determinant. We note that 𝐾(0) = 𝐾(1) = 𝐾, and in general, for 𝑝

even, 𝐾(𝑝) = 𝐾(𝑝+1). Following the exposition of Wand and Jones (1995), equation

(4.6) implies that

𝐸(�̂�𝑝(𝑥)∣𝑋1, . . . , 𝑋𝑛) = e𝑇1 (X
𝑇
𝑥W𝑥X𝑥)

−1X𝑇
𝑥W𝑥𝐸 (Y∣𝑋1, ⋅ ⋅ ⋅ , 𝑋𝑛) (4.7)

where, using Taylor’s expansion,

𝐸 (Y∣𝑋1, . . . , 𝑋𝑛) =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑚(𝑋1)

...

𝑚(𝑋𝑛)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑚(𝑥) +𝑚′(𝑥)(𝑋1 − 𝑥) + ⋅ ⋅ ⋅

...

𝑚(𝑥) +𝑚′(𝑥)(𝑋𝑛 − 𝑥) + ⋅ ⋅ ⋅

⎞⎟⎟⎟⎟⎟⎟⎠ .

Therefore,

𝐸 (�̂�𝑝(𝑥)∣𝑋1, . . . , 𝑋𝑛) = e𝑇1 (X
𝑇
𝑥W𝑥X𝑥)

−1X𝑇
𝑥W𝑥

×

⎧⎨⎩

⎛⎜⎜⎜⎜⎜⎜⎝
1

...

1

⎞⎟⎟⎟⎟⎟⎟⎠𝑚(𝑥) +

⎛⎜⎜⎜⎜⎜⎜⎝
(𝑋1 − 𝑥)

...

(𝑋𝑛 − 𝑥)

⎞⎟⎟⎟⎟⎟⎟⎠𝑚
′(𝑥) + ⋅ ⋅ ⋅

⎫⎬⎭
. (4.8)

For the case when the local polynomial is of degree 𝑝 = 0, we have X𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎝
1

...

1

⎞⎟⎟⎟⎟⎟⎟⎠ ,
and (X𝑇

𝑥W𝑥X𝑥) =
∑𝑛

𝑖=1𝐾ℎ(𝑋𝑖 − 𝑥). Therefore, (4.8) simplifies to

𝐸(�̂�0(𝑥)∣𝑋1, . . . , 𝑋𝑛)−𝑚(𝑥) =
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𝑚′(𝑥)
∑𝑛

𝑖=1(𝑋𝑖 − 𝑥)𝐾ℎ(𝑋𝑖 − 𝑥)∑𝑛
𝑖=1𝐾ℎ(𝑋𝑖 − 𝑥) + ⋅ ⋅ ⋅+ 𝑚

(𝑖)(𝑥)

𝑖!

∑𝑛
𝑖=1(𝑋𝑖 − 𝑥)𝑖𝐾ℎ(𝑋𝑖 − 𝑥)∑𝑛

𝑖=1𝐾ℎ(𝑋𝑖 − 𝑥) + ⋅ ⋅ ⋅

which gives us an expression for the bias when 𝑝 = 0.

For the case when the local polynomial is of degree 𝑝 = 1, X𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 𝑋1 − 𝑥
...

1 𝑋𝑛 − 𝑥

⎞⎟⎟⎟⎟⎟⎟⎠
and so the expansion in equation (4.8) can be written as

𝐸(Y∣𝑋1, . . . , 𝑋𝑛) = X𝑥

⎛⎜⎜⎝ 𝑚(𝑥)

𝑚′(𝑥)

⎞⎟⎟⎠+
1

2
𝑚′′(𝑥)

⎛⎜⎜⎜⎜⎜⎜⎝
(𝑋1 − 𝑥)2

...

(𝑋𝑛 − 𝑥)2

⎞⎟⎟⎟⎟⎟⎟⎠+ ⋅ ⋅ ⋅

where, from equation (4.7),

𝐸(�̂�1(𝑥)∣𝑋1, . . . , 𝑋𝑛)−𝑚(𝑥)

= e𝑇1 (X
𝑇
𝑥W𝑥X𝑥)

−1X𝑇
𝑥W𝑥𝐸 (Y∣𝑋1, ⋅ ⋅ ⋅ , 𝑋𝑛)−𝑚(𝑥)

=
1

2
𝑚′′(𝑥)e𝑇1 (X

𝑇
𝑥W𝑥X𝑥)

−1X𝑇
𝑥W𝑥

⎛⎜⎜⎜⎜⎜⎜⎝
(𝑋1 − 𝑥)2

...

(𝑋𝑛 − 𝑥)2

⎞⎟⎟⎟⎟⎟⎟⎠+ ⋅ ⋅ ⋅

thus giving an expression for the form of the bias when 𝑝 = 1.

Using analysis similar to section (𝐴.3) for the kernel density estimator, the asymp-

totic form of the conditional bias and conditional variance of �̂�𝑝(𝑥) when 𝑝 = 0 and

𝑝 = 1 are thus given as follows: when 𝑝 = 0, the asymptotic bias is

𝐸(�̂�0(𝑥)−𝑚(𝑥)∣𝑋1, . . . , 𝑋𝑛) = ℎ2𝜇2(𝐾) {𝑚′(𝑥)𝑓 ′(𝑥)/𝑓(𝑥)

+
1

2
𝑚(2)(𝑥)

}
+ 𝑜𝑝(ℎ

2) . (4.9)

And when 𝑝 = 1, the asymptotic bias is

𝐸(�̂�1(𝑥)−𝑚(𝑥)∣𝑋1, . . . , 𝑋𝑛) =
1

2
ℎ2𝑚′′(𝑥)𝜇2(𝐾) + 𝑜𝑝(ℎ

2) . (4.10)



Chapter 4. Relevant Statistical Tools 50

The variance of both �̂�0(𝑥) and �̂�1(𝑥) can be shown to be given by

Var(�̂�𝑝(𝑥)∣𝑋1, . . . , 𝑋𝑛) =
∣∣𝐾∣∣22𝜎2(𝑥)
𝑛ℎ𝑓(𝑥)

+ 𝑜𝑝((𝑛ℎ)
−1)

for both 𝑝 = 0 and 𝑝 = 1 where 𝜎2(𝑥) = Var(𝑌 ∣𝑋 = 𝑥).

More generally we have:

Theorem 1 (Ruppert and Wand (1994)1) Assume [0, 1] is the support of 𝑓 , 𝑓(𝑥) > 0

and that 𝑓(⋅), 𝑚(𝑝+1)(⋅) and 𝜎2(⋅) are continuous in a neighbourhood of 𝑥. Further,

assume that ℎ → 0 and 𝑛ℎ → ∞, and that 𝑥 is an interior point, that is, ℎ ≤ 𝑥 ≤
1−ℎ. Then the asymptotic conditional variance of �̂�𝑝(𝑥) (where 𝑝 is the order of the

local polynomial) is given by

𝑉 𝑎𝑟(�̂�𝑝(𝑥)∣𝑋1, . . . , 𝑋𝑛) =
∣∣𝐾(𝑝)∣∣22𝜎2(𝑥)
𝑛ℎ𝑓(𝑥)

+ 𝑜𝑝((𝑛ℎ)
−1) . (4.11)

When 𝑝 is odd:

The asymptotic conditional bias for 𝑝 odd is given by

Bias(�̂�𝑝(𝑥)∣𝑋1, . . . , 𝑋𝑛) =
ℎ𝑝+1𝑚(𝑝+1)(𝑥)𝜇𝑝+1(𝐾(𝑝))

(𝑝+ 1)!
+ 𝑜𝑝(ℎ

𝑝+1) . (4.12)

When 𝑝 is even:

If furthermore 𝑓 ′(⋅) and 𝑚(𝑝+2)(⋅) are continuous in a neighbourhood of 𝑥, and

𝑛ℎ3 → ∞, the asymptotic conditional bias for 𝑝 even is given by

Bias(�̂�𝑝(𝑥)∣𝑋1, . . . , 𝑋𝑛) = ℎ𝑝+2
[
𝑚(𝑝+1)(𝑥)𝑓 ′(𝑥)
𝑓(𝑥)(𝑝+ 1)!

+
𝑚(𝑝+2)(𝑥)

(𝑝+ 2)!

]
× 𝜇𝑝+2(𝐾(𝑝)) + 𝑜𝑝(ℎ

𝑝+2) . (4.13)

We can now write the conditional mean square error as, for 𝑝 odd:

𝑀𝑆𝐸(�̂�𝑝(𝑥)∣𝑋1, . . . , 𝑋𝑛) =

[
ℎ𝑝+1𝑚(𝑝+1)(𝑥)𝜇𝑝+1(𝐾(𝑝))

(𝑝+ 1)!

]2
+
∣∣𝐾(𝑝)∣∣22𝜎2(𝑥)
𝑛ℎ𝑓(𝑥)

+ 𝑜𝑝(ℎ
2𝑝+2 + (𝑛ℎ)−1) , (4.14)

1As adapted from Simonoff (1998), p. 140, and Fan and Gijbels (1996), p. 62.
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and for 𝑝 even:

𝑀𝑆𝐸(�̂�𝑝(𝑥)∣𝑋1, . . . , 𝑋𝑛) = ℎ
2𝑝+4

[
𝑚(𝑝+1)(𝑥)𝑓 ′(𝑥)
𝑓(𝑥)(𝑝+ 1)!

+
𝑚(𝑝+2)(𝑥)

(𝑝+ 2)!

]2

×(𝜇𝑝+2(𝐾𝑝))
2 +

∣∣𝐾(𝑝)∣∣22𝜎2(𝑥)
𝑛ℎ𝑓(𝑥)

+ 𝑜𝑝(ℎ
2𝑝+4 + (𝑛ℎ)−1) . (4.15)

An important point to note is that when the local polynomial order 𝑝 is even, the

order of the asymptotic conditional biases of �̂�𝑝(𝑥) and �̂�𝑝+1(𝑥) are the same, namely

𝑂𝑝(ℎ
𝑝+2). Therefore, the locally constant estimator (𝑝 = 0) and the locally linear

estimator (𝑝 = 1) both have 𝑂𝑝(ℎ
2) bias asymptotically. Defining 𝐴𝑀𝑆𝐸(�̂�𝑝(𝑥))

to be the leading asymptotics of 𝑀𝑆𝐸(�̂�𝑝(𝑥)), from equations (4.14) and (4.15), we

can determine the asymptotic rate of the bandwidth that minimizes the conditional

𝐴𝑀𝑆𝐸(�̂�𝑝(𝑥)). Specifically, when 𝑝 is even, the optimal rate is ℎ = 𝑂(𝑛−1/(2𝑝+5)),

yielding 𝑀𝑆𝐸(�̂�𝑝(𝑥)) = 𝑂𝑝(𝑛
−(2𝑝+4)/(2𝑝+5)), and when 𝑝 is odd, the optimal rate

is ℎ = 𝑂(𝑛−1/(2𝑝+3)), yielding 𝑀𝑆𝐸(�̂�𝑝(𝑥)) = 𝑂𝑝(𝑛
−(2𝑝+2)/(2𝑝+3)). This means that

the optimal asymptotic conditional 𝑀𝑆𝐸(�̂�𝑝(𝑥)) based on the local constant and

local linear estimators both have order 𝑂𝑝(𝑛
−4/5). For 𝑝 = 2 or 𝑝 = 3, the optimal

𝑀𝑆𝐸(�̂�𝑝(𝑥)) = 𝑂𝑝(𝑛
−8/9), and so on. Furthermore, we note that the form of the bias

for 𝑝 odd is simpler than for 𝑝 even, insofar as for 𝑝 odd we do not require knowledge

of the design density function 𝑓(𝑥) (Simonoff (1996), p. 141).

4.1.5 Boundary bias of local polynomial estimators

In Figure 4.1, we show a scatter plot of 𝑦 versus 𝑥 for the regression function 𝑦 = 5𝑥+𝜖,

where 100 𝑥’s were generated from a standard normal distribution, and the 𝜖’s were

also generated (independently) from a normal standard distribution. The figure also

shows the 𝑝 = 0 (Nadaraya-Watson) and the 𝑝 = 1 (local linear) regression curve

estimates using a Gaussian kernel and bandwidth ℎ = 0.2. Note that on the left edge
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of the x-axis, the Nadaraya-Watson kernel estimator curve lies above the data, and on

the right edge of the x-axis, it lies below the data. On the other hand, no such edge

bias is observed for the local linear estimator. One of the most common problems

encountered when fitting kernel regression estimators, such as the Nadaraya-Watson

estimator, is the edge or boundary bias that arises due to the absence of data at and

beyond the boundaries. A major advantage of the local polynomial estimator (for

odd degrees 𝑝), is that it automatically adjusts for boundary bias.

−2 −1 0 1 2

−
10

−
5

0
5

10

x

y

Figure 4.1: The 𝑥-axis represents 100 randomly generated standard normal random variables. The

scatter plot represents a 𝑦 = 5𝑥 + 𝜖 relationship, where the 𝜖’s are also generated (independently)

from a standard normal distribution. The Nadaraya-Watson estimate (𝑝 = 0) is the solid line. The

local linear estimate (𝑝 = 1), is the dashed line. The kernel is the standard Gaussian, and the

bandwidth value is ℎ = 0.2.

Analogous to the case when 𝑥 is an interior point, one can derive the bias and

the variance of �̂�1(𝑥) and �̂�0(𝑥) when 𝑥 in a left boundary, that is when 𝑥 = 𝛼ℎ,
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0 ≤ 𝛼 < 1, or when 𝑥 is in the right boundary, that is when 𝑥 = 1− 𝛼ℎ.
Letting

𝜇𝑟,𝛼(𝐾) =
∫ 1

−𝛼
𝑢𝑟𝐾(𝑢)𝑑𝑢 (4.16)

in the case when 𝑥 is a left boundary point, we have

𝐸(�̂�1(𝑥)−𝑚(𝑥)) =
1

2
ℎ2𝑚′′(𝑥)𝑄𝛼(𝐾) + 𝑜𝑝(ℎ

2), (4.17)

where

𝑄𝛼(𝐾) =
𝜇22,𝛼(𝐾)− 𝜇1,𝛼(𝐾)𝜇3,𝛼(𝐾)

𝜇2,𝛼(𝐾)𝜇0,𝛼(𝐾)− 𝜇21,𝛼(𝐾)
,

and

𝐸(�̂�0(𝑥)−𝑚(𝑥)) = 𝑚′(𝑥)
𝜇1,𝛼(𝐾)

𝜇0,𝛼(𝐾)
ℎ+𝑂𝑝(ℎ

2) . (4.18)

The same holds when 𝑥 is a right boundary point, except that the order of integration

in (4.16) is from −1 to 𝛼. The kernel 𝐾 is supported on [−1, 1].

What we observe from (4.17) and (4.10) is that the bias of the local linear estimator

is 𝑂𝑝(ℎ
2) whether 𝑥 is an interior point or a boundary point. On the other hand, from

(4.18) and (4.9) we see that the bias of the locally constant estimator increases from

𝑂𝑝(ℎ
2) to 𝑂𝑝(ℎ) when 𝑥 goes from being an interior point to being a boundary point,

unless 𝑚′(𝑥) = 0 . This phenomenon is evident in Figure 4.1. In particular, note that

the term 𝜇1,𝛼(𝐾)/𝜇0,𝛼(𝐾) in (4.18) is positive when 𝑥 is in the left boundary, and

negative when 𝑥 is in the right boundary. When 𝑚′(𝑥) > 0, the increase to 𝑂𝑝(ℎ) on

the left boundary means that the bias will be positive, as is indicated by our estimator

�̂�0(𝑥) lying above the data. Similarly, in the right boundary, the increase to 𝑂𝑝(ℎ)

means that the bias will be negative, as is indicated by our estimator �̂�0(𝑥) lying

below the data there. This is due to the absence of observations at and beyond the

boundary.
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Boundary bias adjustment is not necessary for the local linear estimator. This

is a key advantage of the local linear estimator over the locally constant (Nadaraya-

Watson) estimator. This fact generalizes to the other estimators �̂�𝑝(𝑥); when 𝑝 is

odd, boundary bias is eliminated, but when 𝑝 is even, boundary bias exists. (We are,

of course, referring here to the leading order terms in the various bias expressions.)

The advantage of the locally linear estimator over the locally constant estimator does

come at a cost however. The asymptotic conditional variance of �̂�1(𝑥) is about

3.17 times that of �̂�0(𝑥) at the boundary when the Gaussian kernel and the same

bandwidth ℎ are used (Simonoff (1998), p. 143).

4.1.6 Measures of discrepancy

One of the ways in which an “optimal” bandwidth maybe defined is by introducing

a global measure of discrepancy between the unknown regression curve 𝑚(⋅) and its

estimate �̂�ℎ(⋅), and determining the bandwidth ℎ which minimizes this measure of

discrepancy. Some such measures, discussed in Härdle (1990 and 1991) are:

∙ Averaged squared error

𝐴𝑆𝐸(ℎ) = 𝑛−1
𝑛∑

𝑗=1

(𝑚(𝑋𝑗)− �̂�ℎ(𝑋𝑗))
2𝑤(𝑋𝑗) (4.19)

where 𝑤(⋅) is some assigned weight function

∙ Integrated squared error

𝐼𝑆𝐸(ℎ) =
∫ ∞

−∞
(�̂�ℎ(𝑥)−𝑚(𝑥))2𝑤(𝑥)𝑓(𝑥)𝑑𝑥 (4.20)

∙ Conditioned averaged squared error

𝑀𝐴𝑆𝐸(ℎ) = 𝐸(𝐴𝑆𝐸(ℎ)∣𝑋1, . . .𝑋𝑛) (4.21)

∙ Mean integrated squared error

𝑀𝐼𝑆𝐸(ℎ) = 𝐸(𝐼𝑆𝐸(ℎ)) . (4.22)
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All of the above measures are random except for 𝑀𝐼𝑆𝐸(ℎ) since this mean is

computed over all possible samples (𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛). Given such various mea-

sures of discrepancy between 𝑚(⋅) and �̂�ℎ(⋅), the question is which one is the most

appropriate distance measure to use for the purposes of determining an optimal band-

width. Härdle and Marron (1986) showed that under suitable moment conditions on

𝑌 , given the predictors, and assuming certain continuity properties on 𝑓(𝑥) and on

the kernel 𝐾, bandwidth sequences that minimize 𝐴𝑆𝐸(ℎ), 𝐼𝑆𝐸(ℎ) or 𝑀𝐴𝑆𝐸(ℎ)

also asymptotically minimize 𝑀𝐼𝑆𝐸(ℎ). For this reason, for purposes of bandwidth

selection, it does not matter greatly which of those distance measures we choose to

work with. For further discussion, refer to Härdle (1990), Chapter 5.

4.1.7 Bandwidth selection via cross-validation in local poly-

nomial regression

We begin here by examining the average squared error 𝐴𝑆𝐸(ℎ), defined by equation

(4.19):

𝐴𝑆𝐸(ℎ) = 𝑛−1
𝑛∑

𝑖=1

(𝑚(𝑋𝑖)− �̂�ℎ(𝑋𝑖))
2𝑤(𝑋𝑖)

If we were to naively estimate the unknown means 𝑚(𝑋𝑖) with their corresponding

observations 𝑌𝑖, the estimate we obtain for 𝐴𝑆𝐸(ℎ) would become

𝑟(ℎ) = 𝑛−1
𝑛∑

𝑖=1

[𝑌𝑖 − �̂�ℎ(𝑋𝑖)]
2𝑤(𝑋𝑖) . (4.23)

The problem with this estimate is that as ℎ → 0, �̂�ℎ(𝑋𝑖) → 𝑌𝑖, and consequently,

𝑟(ℎ) → 0. The optimal bandwidth in that case would be the smallest possible band-

width, i.e. the one that interpolates the data.

One may remedy this problem if in the estimation of �̂�ℎ(𝑋𝑖) in equation (4.23), we

do not use (𝑋𝑖, 𝑌𝑖). The leave-one-out method is based on omissions of one observation,
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say the 𝑖 th one, from the regression smoother:

�̂�ℎ,−𝑖(𝑋𝑖) =
𝑛∑

𝑗 ∕=𝑖

𝑤ℎ𝑗(𝑋𝑖)𝑌𝑗.

If we use these modified smoothers in equation (4.23), we are led to the so-called

cross-validation bandwidth selection criterion

𝐶𝑉 (ℎ) = 𝑛−1
𝑛∑

𝑖=1

[𝑌𝑖 − �̂�ℎ,−𝑖(𝑋𝑖)]
2𝑤(𝑋𝑖). (4.24)

We choose the value of ℎ that minimizes the 𝐶𝑉 (ℎ) function.

The computation of 𝐶𝑉 (ℎ) can be computationally intensive since it requires the

values of �̂�ℎ,−𝑖(𝑋𝑖) for all 𝑖 = 1, . . . , 𝑛. However, if 𝑆 = 𝑆(ℎ) is the 𝑛× 𝑛 regression

“hat” matrix, so that, m̂ = 𝑆Y where 𝑆 depends on the 𝑋 variates only, then we

can write

𝐶𝑉 (ℎ) =
1

𝑛

𝑛∑
𝑖=1

(
𝑌𝑖 − �̂�ℎ(𝑋𝑖)

1− 𝑆𝑖𝑖

)2

𝑤(𝑋𝑖) (4.25)

which is much easier to compute than (4.24). Here 𝑆𝑖𝑖 are the diagonal elements of

𝑆. This equation holds because typically

�̂�ℎ,−𝑖(𝑋𝑖)− 𝑌𝑖 = �̂�ℎ(𝑋𝑖)− 𝑌𝑖
1− 𝑆𝑖𝑖 . (4.26)

See, for example, Heckman [28]. The 𝐶𝑉 (ℎ) function for the Nadaraya-Watson es-

timator, for example, can be written in the form of equation (4.25), where 𝑆𝑖𝑗 =

𝐾((𝑋𝑗 −𝑋𝑖)/ℎ)/
∑

𝑙𝐾((𝑋𝑙 −𝑋𝑖)/ℎ), provided that 𝐾(0) > 0 and 𝑆𝑖𝑖 ∕= 1.

4.1.8 A rule of thumb bandwidth selection method for the

local polynomial regression

A simple, but a rather crude bandwidth selection strategy is as follow. First consider

the 𝑀𝐼𝑆𝐸(ℎ):

𝑀𝐼𝑆𝐸(ℎ) =
∫
{bias2(�̂�𝑝(𝑥)∣𝑋1, . . . , 𝑋𝑛) + Var(�̂�𝑝(𝑥)∣𝑋1, . . . , 𝑋𝑛)}𝑓(𝑥)𝑤(𝑥)𝑑𝑥
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where 𝑤 ≥ 0 is some weight function. Here, the order of the polynomial 𝑝 is an odd

number. Then the bandwidth chosen to minimize 𝑀𝐼𝑆𝐸(ℎ), ℎ̂𝑜𝑝𝑡, is given by

ℎ̂𝑜𝑝𝑡 = 𝐶𝑝(𝐾)

[ ∫
𝜎2(𝑥)𝑤(𝑥)𝑑𝑥

𝑛
∫ {𝑚(𝑝+1)(𝑥)}2𝑤(𝑥)𝑓(𝑥)𝑑𝑥

]1/(2𝑝+3)
(4.27)

where

𝐶𝑝(𝐾) =

⎡⎣ (𝑝+ 1)! 2
∫
𝐾∗2

𝑝 (𝑡)𝑑𝑡

2(𝑝+ 1){∫ 𝑡𝑝+1𝐾∗
𝑝(𝑡)𝑑𝑡}2

⎤⎦1/(2𝑝+3)

and where

𝐾∗
𝑝 (𝑡) =

𝑝∑
𝑙=0

𝑡𝑙𝐾(𝑡) .

(See Fan and Gijbels (1996), p. 67-68, 111). The unknown quantities which we need

to estimate are 𝜎2(𝑥), 𝑓(𝑥) and 𝑚(𝑝+1)(𝑥). Begin by fitting a polynomial of order

𝑝+ 3 globally to 𝑚(𝑥), say �̌�(𝑥), then take the standardized residuals sum of square

as an estimate of 𝜎2(𝑥). Denote this estimate by �̌�2. The denominator of (4.27) can

then be estimated by

1

𝑛

𝑛∑
𝑖=1

{�̌�(𝑝+1)(𝑋𝑖)}2𝑤(𝑋𝑖)

which leads to the simple rule of thumb bandwidth selector

ℎ𝑅𝑂𝑇 = 𝐶𝑝(𝐾)

[
�̌�2
∫
𝑤(𝑥)𝑑𝑥∑𝑛

𝑖=1{�̌�(𝑝+1)(𝑋𝑖)}2𝑤(𝑋𝑖)

]1/(2𝑝+3)
.

4.2 Generalized linear models and local smoothing

Generalized linear models (GLM) are particular extensions of the normal linear re-

gression model to the case where the response variables may have distributions other

than the normal – either continuous or discrete – and furthermore where the rela-

tionship between the response and the explanatory variables are not necessarily of a

simple linear form. Because many of the ‘nice’ properties of the normal distribution

family are shared by exponential families, the models considered in generalized linear
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models generally assume that the conditional distribution of the response variable 𝑌,

given the associated covariate variables 𝑋, has (for a fixed, although not necessarily

known values of, 𝜙) an exponential family form

𝑓(𝑦∣𝑥) = exp[ {𝜃(𝑥)𝑦 − 𝑏(𝜃(𝑥))}/𝑎(𝜙) + 𝑐(𝑦, 𝜙) ] (4.28)

where 𝑎(⋅), 𝑏(⋅) and 𝑐(⋅) are known functions. The parameter 𝜃(⋅) is called the canon-

ical parameter, and 𝜙 the dispersion parameter. The conditional mean and variance

in this model can be shown to be

𝑚(𝑥) = 𝐸(𝑌 ∣𝑋 = 𝑥) = 𝑏′(𝜃(𝑥)) , (4.29)

and

Var(𝑌 ∣𝑋 = 𝑥) = 𝑎(𝜙)𝑏′′(𝜃(𝑥)) . (4.30)

In parametric GLM, the unknown regression function 𝑚(𝑥) is typically modelled as

𝑔(𝑚(𝑥)) = 𝑥𝑡𝛽

where in view of (4.29), 𝑔(⋅) may be thought of as a function that links the conditional

regression mean to a linear predictor. If 𝑔 = (𝑏′)−1, then 𝑔 is referred to as the

canonical link function and we then have 𝜃(𝑥) = 𝑥𝑡𝛽.

For our work, we will specifically require the GLM based on conditional binomial

distributions where our aim is to model the probability of occurrence of words (shin-

gles) in the DEEDS documents as a function of time. Therefore, in this model, we

are interested in the mean of the sample proportion rather than in the mean number

of successes. Let 𝑟 be the number of trials, and 𝑌 be the number of successes in the 𝑟

trials, and let 𝑋 be a predictor variable such that 𝑌 ∼ 𝐵(𝑟, 𝜋(𝑋)), where 𝜋(𝑋) is the

probability of success. Letting 𝑌 ∗ = 𝑌/𝑟 be the sample proportion, we are interested
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in estimating 𝐸(𝑌 ∗∣𝑋, 𝑟). Let (𝑋𝑖, 𝑟𝑖, 𝑌𝑖), 𝑖 = 1, . . . , 𝑛 be independent samples drawn

from the same population as (𝑋, 𝑟, 𝑌 ), and let 𝑌𝑖 = 𝑟𝑖𝑌
∗
𝑖 ∼ 𝐵(𝑟𝑖, 𝜋(𝑋𝑖)) where 𝑌

∗
𝑖 is

the sample proportion at 𝑋𝑖. The joint conditional log-likelihood of the (𝑌 ∗
𝑖 ∣𝑋𝑖, 𝑟𝑖)

may then be written in the form

𝑙(𝑌 ∗
1 , . . . , 𝑌

∗
𝑛 ∣(𝑋𝑖, 𝑟𝑖) : 𝑖 = 1, . . . , 𝑛)

=
𝑛∑

𝑖=1

{
𝑌 ∗
𝑖 𝜃(𝑋𝑖)− log(1 + exp(𝜃(𝑋𝑖)))

1/𝑟𝑖
+ log

(
𝑟𝑖
𝑟𝑖𝑌 ∗

𝑖

)}

where 𝜃(𝑋𝑖) = log
(

𝜋(𝑋𝑖)
1−𝜋(𝑋𝑖)

)
. This is of the form (4.28) with 𝑏(𝜃(𝑋𝑖)) = log(1 +

exp(𝜃(𝑋𝑖))), 𝜙𝑖 = 𝑟𝑖, 𝑎𝑖(𝜙𝑖) = 1/𝑟𝑖, and 𝑐𝑖(𝑌
∗
𝑖 , 𝜙𝑖) = log

(
𝑟𝑖

𝑟𝑖𝑌 ∗
𝑖

)

4.2.1 Local polynomial kernel regression for generalized lin-

ear models

Our main reference for this subsection is Fan and Gijbels (1996,2000). Suppose

the function 𝜃(⋅) is the canonical parameter in a generalized linear model based on

observed data {(𝑋𝑖, 𝑌𝑖), 𝑖 = 1, . . . , 𝑛} drawn from a population (𝑋, 𝑌 ), where 𝑌𝑖 is

the scalar response, and 𝑋𝑖 the associated covariate vector. The function 𝜃(⋅) can for

example be the logit transform of the conditional probabilities in a binomial model. If

𝑔(⋅) is the canonical link function, we will have 𝜃(𝑥) = 𝑔(𝑥; 𝛽) and this is modelled as a

linear combination of predictors. Specifically, 𝑔(𝑥; 𝛽) will be chosen to be a polynomial

of degree at most 𝑝 in the predictor variable, and 𝛽 is the vector of coefficients of this

polynomial. We then attempt to maximize over the 𝛽’s the conditional log-likelihood

which we write in the from

𝑛∑
𝑖=1

𝑙{𝑋𝑖, 𝑌𝑖, 𝑔(𝑋𝑖; 𝛽)} . (4.31)

The generalized linear model approach to modelling the link structure suffers from

the same deficiencies as does parametric regression, namely insufficient flexibility. The
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(generalized) local polynomial regression method generalizes the global parametric

modelling approach of equation (4.31). (In that equation, the polynomial in the

predictors is considered to be fixed over their entire domain). Specifically, we assume

that the function 𝑔 can be approximated in the neighbourhood of any point 𝑥 by a

polynomial of degree 𝑝,

𝜃(𝑢) = 𝑔(𝑢; 𝜃) ≈ 𝛽0 + 𝛽1(𝑢− 𝑥) + ⋅ ⋅ ⋅+ 𝛽𝑝(𝑢− 𝑥)𝑝 ,

where 𝛽𝑗 = 𝜃(𝑗)(𝑥)
𝑗!

. In the above equation, the dependence of the 𝛽’s on 𝑥 has been

suppressed. We then use a kernel function 𝐾ℎ(𝑋𝑖 − 𝑥) to weight the contribution of

each data point (𝑋𝑖, 𝑌𝑖) according to the distance of 𝑋𝑖 from 𝑥. We are thus led to

maximize (with respect to the 𝛽’s) the local log-likelihood which is defined as

𝐿(𝛽(𝑥)) =
𝑛∑

𝑖=1

𝑙{𝑋𝑖, 𝑌𝑖, 𝑔(𝑋𝑖; 𝛽)}𝐾ℎ(𝑋𝑖 − 𝑥)

=
𝑛∑

𝑖=1

𝑙(𝑋𝑖, 𝑌𝑖, 𝛽0 + 𝛽1(𝑋𝑖 − 𝑥) + ⋅ ⋅ ⋅+ 𝛽𝑝(𝑋𝑖 − 𝑥)𝑝)𝐾ℎ(𝑋𝑖 − 𝑥) . (4.32)

Let 𝛽𝑗, 𝑗 = 0, . . . , 𝑝 optimize (4.32). Note that in particular, 𝛽0 then estimates 𝜃(𝑥).

We now apply the local polynomial approach to the case of the binomial distribu-

tion model discussed in the previous section. In that model, we have the conditional

distribution

(𝑌𝑖∣𝑋𝑖, 𝑟𝑖) ∼ 𝐵(𝑟𝑖, 𝜋(𝑋𝑖)) .

If we use the canonical link function (the logit), we will have

𝜃(𝑥) = log{𝜋(𝑥)/(1− 𝜋(𝑥))}

and

𝑏(𝜃) = log{1 + exp(𝜃)} .
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Define 𝑌 ∗
𝑖 via 𝑌𝑖 = 𝑟𝑖𝑌

∗
𝑖 . Then, (4.32) reduces to

𝐿(𝛽(𝑥)) =
𝑛∑

𝑖=1

𝑙{𝑋𝑖, 𝑌
∗
𝑖 , 𝑔(𝑋𝑖; 𝛽)}𝐾ℎ(𝑋𝑖 − 𝑥)

=
𝑛∑

𝑖=1

{
𝑌 ∗
𝑖 𝜃(𝑋𝑖)− log(1 + exp(𝜃(𝑋𝑖)))

1/𝑟𝑖
+ log

(
𝑟𝑖
𝑟𝑖𝑌 ∗

𝑖

)}
𝐾ℎ(𝑋𝑖 − 𝑥)

=
𝑛∑

𝑖=1

{(𝛽0 + 𝛽1(𝑋𝑖 − 𝑥) + ⋅ ⋅ ⋅+ 𝛽𝑝(𝑋𝑖 − 𝑥)𝑝)𝑌𝑖
−𝑟𝑖𝑏(𝛽0 + 𝛽1(𝑋𝑖 − 𝑥) + ⋅ ⋅ ⋅+ 𝛽𝑝(𝑋𝑖 − 𝑥)𝑝)

+ log

(
𝑟𝑖
𝑌𝑖

)}
𝐾ℎ(𝑋𝑖 − 𝑥) . (4.33)

In the case of locally constant regression (𝑝 = 0), the expression above becomes

𝑛∑
𝑖=1

[
𝑌𝑖𝛽0 − 𝑟𝑖𝑏(𝛽0) + log

(
𝑟𝑖
𝑌𝑖

)]
𝐾ℎ(𝑋𝑖 − 𝑥) ,

and the maximizing value of 𝛽0 is given by

𝛽0 = log

( ∑𝑛
𝑖=1 𝑌𝑖𝐾ℎ(𝑋𝑖 − 𝑥)/∑𝑛

𝑖=1 𝑟𝑖𝐾ℎ(𝑋𝑖 − 𝑥)
1−∑𝑛

𝑖=1 𝑌𝑖𝐾ℎ(𝑋𝑖 − 𝑥)/∑𝑛
𝑖=1 𝑟𝑖𝐾ℎ(𝑋𝑖 − 𝑥)

)
(4.34)

so that

�̂�(𝑥) = �̂�ℎ(𝑥) =
exp(𝛽0)

1 + exp(𝛽0)
=

∑𝑛
𝑖=1 𝑌𝑖𝐾ℎ(𝑋𝑖 − 𝑥)∑𝑛
𝑖=1 𝑟𝑖𝐾ℎ(𝑋𝑖 − 𝑥) . (4.35)

If the number of trials 𝑟𝑖 is the same for all 𝑖’s, then the above equation actually

corresponds to the Nadaraya-Watson estimator. (In fact, it is the case that the

locally constant kernel-weighted estimator (𝑝 = 0) results in the Nadaraya-Watson

estimator for all exponential family models.)

If we maximize equation (4.33) based on expansion of 𝜃(⋅) up to linear order

(𝑝 = 1), then 𝐿(𝛽(𝑥)) becomes

𝑓(𝛽0, 𝛽1) =

𝑛∑
𝑖=1

[
𝑌𝑖(𝛽0 + 𝛽1(𝑋𝑖 − 𝑥))− 𝑟𝑖𝑏(𝛽0 + 𝛽1(𝑋𝑖 − 𝑥)) + log

(
𝑟𝑖
𝑌𝑖

)]
𝐾ℎ(𝑋𝑖 − 𝑥) . (4.36)
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and we need to determine

argmax
𝛽0,𝛽1

𝑓(𝛽0, 𝛽1).

The partial derivatives of 𝑓 with respect to 𝛽0 and 𝛽1, are

∂𝑓

∂𝛽0
(𝛽0, 𝛽1) =

𝑛∑
𝑖=1

{𝑌𝑖 − 𝑟𝑖𝑏′(𝛽0 + 𝛽1(𝑋𝑖 − 𝑥))}𝐾ℎ(𝑋𝑖 − 𝑥) (4.37)

∂2𝑓

∂2𝛽0
(𝛽0, 𝛽1) =

𝑛∑
𝑖=1

−𝑟𝑖𝑏′′(𝛽0 + 𝛽1(𝑋𝑖 − 𝑥))𝐾ℎ(𝑋𝑖 − 𝑥) (4.38)

∂𝑓

∂𝛽1
(𝛽0, 𝛽1) =

𝑛∑
𝑖=1

{𝑌𝑖 − 𝑟𝑖𝑏′(𝛽0 + 𝛽1(𝑋𝑖 − 𝑥))}(𝑋𝑖 − 𝑥)𝐾ℎ(𝑋𝑖 − 𝑥) (4.39)

∂2𝑓

∂2𝛽1
(𝛽0, 𝛽1) =

𝑛∑
𝑖=1

−𝑟𝑖(𝑋𝑖 − 𝑥)2𝑏′′(𝛽0 + 𝛽1(𝑋𝑖 − 𝑥))𝐾ℎ(𝑋𝑖 − 𝑥) (4.40)

∂2𝑓

∂𝛽0∂𝛽1
(𝛽0, 𝛽1) =

𝑛∑
𝑖=1

−𝑟𝑖(𝑋𝑖 − 𝑥)𝑏′′(𝛽0 + 𝛽1(𝑋𝑖 − 𝑥))𝐾ℎ(𝑋𝑖 − 𝑥) (4.41)

where 𝑏′(𝑧) = exp(𝑧)/1+exp(𝑧) and 𝑏′′(𝑧) = exp(𝑧)/(1+exp(𝑧))2. Setting (4.37) and

(4.39) to zero, the optimal values 𝛽0 and 𝛽1 will be the solutions to the equations

𝑛∑
𝑖=1

𝑌𝑖𝐾ℎ(𝑋𝑖 − 𝑥) =
𝑛∑

𝑖=1

𝑟𝑖 exp(𝛽0 + 𝛽1(𝑋𝑖 − 𝑥))
1 + exp(𝛽0 + 𝛽1(𝑋𝑖 − 𝑥)) ×𝐾ℎ(𝑋𝑖 − 𝑥) (4.42)

and

𝑛∑
𝑖=1

𝑌𝑖(𝑋𝑖 − 𝑥)𝐾ℎ(𝑋𝑖 − 𝑥)

=
𝑛∑

𝑖=1

𝑟𝑖 exp(𝛽0 + 𝛽1(𝑋𝑖 − 𝑥))
1 + exp(𝛽0 + 𝛽1(𝑋𝑖 − 𝑥))(𝑋𝑖 − 𝑥)×𝐾ℎ(𝑋𝑖 − 𝑥) . (4.43)

The solutions for 𝛽0 and 𝛽1 need to be found using a numerical method such as

Newton-Raphson. We may set the initial value of 𝛽0 to be the solution for the local
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polynomial estimator 𝑝 = 0, equation (4.34), together with 𝛽1 = 0. Similar to the

case of local polynomial of degree 𝑝 = 0, 𝜋(𝑥) is then estimated as

�̂�(𝑥) = �̂�ℎ(𝑥) =
exp(𝛽0)

1 + exp(𝛽0)
. (4.44)

We claim that 𝛽0 and 𝛽1 are the global maximal values of 𝑓 . To prove this, we

apply the second partial derivative test (see Adams (1987), p. 135). Letting 𝑐𝑖 =

−𝑟𝑖𝑏′′(𝛽0 + 𝛽1(𝑋𝑖 − 𝑥))𝐾ℎ(𝑋𝑖 − 𝑥) we have that

∂2𝑓

∂2𝛽0
(𝛽0, 𝛽1) =

𝑛∑
𝑖=1

𝑐𝑖

∂2𝑓

∂2𝛽1
(𝛽0, 𝛽1) =

𝑛∑
𝑖=1

𝑐𝑖(𝑋𝑖 − 𝑥)2

∂2𝑓

∂𝛽0∂𝛽1
(𝛽0, 𝛽1) =

𝑛∑
𝑖=1

𝑐𝑖(𝑋𝑖 − 𝑥) .

The determinant 𝐷 of the Hessian matrix of 𝑓(𝛽0, 𝛽1) is

𝐷 = { ∂
2𝑓

∂2𝛽0
(𝛽0, 𝛽1)}{ ∂

2𝑓

∂2𝛽1
(𝛽0, 𝛽1)} − { ∂2𝑓

∂𝛽0∂𝛽1
(𝛽0, 𝛽1)}2

=

⎡⎣ 𝑛∑
𝑖=1

𝑐𝑖
𝑛∑

𝑗=1

𝑐𝑗(𝑋𝑗 − 𝑥)2
⎤⎦− [

𝑛∑
𝑖=1

𝑐𝑖(𝑋𝑖 − 𝑥)
]2

=
∑

1≤𝑖<𝑗≤𝑛

{
𝑐𝑖𝑐𝑗(𝑋𝑖 − 𝑥)2 + 𝑐𝑖𝑐𝑗(𝑋𝑗 − 𝑥)2 − 2𝑐𝑖𝑐𝑗(𝑋𝑖 − 𝑥)(𝑋𝑗 − 𝑥)

}

=
𝑛∑

1≤𝑖<𝑗≤𝑛

𝑐𝑖𝑐𝑗 [(𝑋𝑖 − 𝑥)− (𝑋𝑗 − 𝑥)]2

≥ 0 .

If 𝐾ℎ(⋅) is a positive function, then 𝑐𝑖 < 0 whenever 𝑟𝑖 > 0 and we will have the

strict inequality 𝐷 > 0 provided the 𝑋𝑖 are not all equal. (In the next chapter, it will

be made clear why such assumptions are valid in the context of dating the DEEDS

documents). Since ∂2𝑓
∂2𝛽0

(𝛽0, 𝛽1) =
∑𝑛

𝑖=1 𝑐𝑖 < 0 and 𝐷 > 0 regardless of the particular

values of (𝛽0, 𝛽1), then (𝛽0, 𝛽1) is in fact the global maximum of (4.36).
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In Chapter 6, we will use local polynomial kernel regression for the binomial

model to estimate the prevalence (frequency) across time of particular shingles from

the DEEDS documents. The cases will be the documents 𝒟 of the DEEDS data set.

The covariate 𝑋 will represent the date in which a given document 𝒟 is written, 𝑟 will

represent the total number of not necessarily distinct shingles in a set of a shingled

document 𝒟. (From Section 3.3.2, recall that this set is denoted by 𝑠𝑘(𝒟)). 𝑌/𝑟 will

represent the proportion of time a given shingle appears in the document.

4.2.2 Properties of the estimator of the canonical parameter

curve in the GLM model

We now provide some analysis of the asymptotic properties of the estimated binomial

proportion function �̂�ℎ(𝑥) defined at (4.35) and (4.44). But first, we briefly describe

the relevance of this estimator in our study of the DEEDS documents. (This will be

expanded upon in Chapter 6). Let 𝒟 be a document in a test set 𝒜, and let 𝑡𝒟 be the

date in which the document 𝒟 was written. (This date is presumed to be unknown

so we are trying to estimate it). The occurrences of some given shingle 𝑠 of order 𝑘

in document 𝒟 is assumed to be binomially distributed, where the number of trials is

the total number shingles of order 𝑘 of 𝒟, and 𝜋ℎ(𝑡), the probability of success (i.e. of

observing the shingle 𝑠 at time 𝑡) is estimated using (4.35) or (4.44) (applied to the

shingle counts in the training data) in the cases that the local polynomial fitting is of

degree 𝑝 = 0, or 𝑝 = 1, respectively. To denote the dependence of �̂�ℎ(𝑥) on the shingle

𝑠, we write it as 𝜋𝑠,ℎ(𝑡). A proposed method for obtaining a date estimate 𝑡𝒟 for the

document 𝒟, with some modifications which we will discuss later, is a likelihood-type

procedure

𝑡𝒟 = argmax
𝑡

∏
𝑠∈𝑠𝑘(𝒟)

�̂�𝑠,ℎ(𝑡)
∏

𝑠/∈𝑠𝑘(𝒟)
(1− �̂�𝑠,ℎ(𝑡)).
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The properties of the estimator 𝑡𝒟 will be discussed in Chapter 6 where we will also

elaborate on the assumptions made regarding the set of all of the DEEDS documents.

We will examine the asymptotic distribution of �̂�𝑠,ℎ(𝑥) as 𝑛 increases to infinity,

and the bandwidth ℎ decreases to 0. Recall that �̂�𝑠,ℎ(𝑡) is an estimate of 𝜋(𝑥) = 𝑚(𝑥)

(for a fixed shingle 𝑠) where

𝑚(𝑥) = 𝐸(𝑌 ∗∣𝑋 = 𝑥, 𝑟) = 𝑏′(𝜃(𝑥)),

and where 𝑌 ∗ = 𝑌/𝑟, (𝑌 ∣𝑋, 𝑟) ∼ B(𝑟, 𝜋(𝑥)), 𝑏(𝑥) = log(1+exp(𝑥)), 𝜃(𝑥) = log{𝜋(𝑥)/(1−
𝜋(𝑥))}, and

Var(𝑌 ∗∣𝑋 = 𝑥, 𝑟) = 𝑏′′(𝜃(𝑥))/𝑟 .

We will also examine the forms of the bias when 𝑥 is an interior point and when 𝑥 is

a boundary point. Issues of bias at the boundary are quite important for the analysis

of the DEEDS data set due to the limited range of dates for those manuscripts, and

due to the nature of the empirical design density of their dates. Except for some

minor modifications, the results here are from Fan, Heckman and Wand (1995), and

Fan and Gijbels (1996). We focus, in particular, on polynomials of degree 𝑝 = 0 and

𝑝 = 1 in the local polynomial modelling approach, although the results may be easily

extended to polynomials of arbitrary degree.

In order to keep our discussions general, let 𝐿(𝛽(𝑥)) be the local log-likelihood as

defined in equation (4.32), and let 𝑚(𝑥) and Var(𝑌 ∣𝑋 = 𝑥) be the functions as stated

in (4.29) and (4.30) respectively. The main results use the following conditions:

(1) Var(𝑌 ∣𝑋 = 𝑥), and the design density function 𝑓(⋅), are continuous.

(2) Var(𝑌 ∣𝑋 = 𝑥) > 0

(3) 𝐸(𝑌 4∣𝑋 = 𝑥) is bounded in a neighbourhood of 𝑥.

We first discuss the case when 𝑥 is an interior point of the design.
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Theorem 2 (Fan et al. (1995)) Suppose the conditions 1, 2 and 3 above hold, and

that 𝑝 = 0. If 𝑥 is an interior point of the design density, then as ℎ→ 0 and 𝑛ℎ→ ∞,

√
𝑛ℎ

𝜎(𝑥;𝐾)

[
(𝛽0 − 𝛽0)− ℎ

2𝜇2(𝐾)

𝑏′′(𝛽0)

{
𝑚′(𝑥)

𝑓 ′(𝑥)
𝑓(𝑥)

+
𝑚′′(𝑥)

2

}
+ 𝑜(ℎ2)

]
𝑑−→ 𝑁 (0, 1)

where 𝜇ℓ(𝐾) =
∫
𝑧ℓ𝐾(𝑧)𝑑𝑧, and

𝜎2(𝑥;𝐾) = {𝑏′′(𝛽0)𝑓(𝑥)}−1
∫
𝐾2(𝑧)𝑑𝑧.

Note here that 𝑏′′(𝛽0) = Var(𝑌 ∣𝑋 = 𝑥).

Theorem 3 (Fan et al. (1995)) Suppose the conditions 1,2 and 3 above hold, and

that 𝑝 = 1. If 𝑥 is an interior point of the design density, then as ℎ→ 0 and 𝑛ℎ→ ∞,

√
𝑛ℎ

𝜎(𝑥;𝐾)

(
𝛽0 − 𝛽0 − 𝛽2ℎ2𝜇2(𝐾) + 𝑜(ℎ2)

)
𝑑−→ N (0, 1)

where 𝜎2(𝑥;𝐾) is as stated above, and 𝜇ℓ(𝐾) =
∫
𝑧ℓ𝐾(𝑧)𝑑𝑧. Here, 𝛽2 =

𝜃(2)(𝑥)
2!

.

As we are ultimately interested in the form of the bias and variance of the estimator

�̂�𝑝(𝑥) = 𝑏
′(𝛽0), some further elaboration on Theorems 2 and 3 is in order. We focus

our attention on the case 𝑝 = 0, i.e. on �̂�0(𝑥), since the same argument may be used

to find the asymptotic bias and variance of �̂�1(𝑥).

Let

𝐶ℎ(𝑥) =
ℎ2𝜇2(𝐾)

𝑏′′(𝛽0)

{
𝑚′(𝑥)

𝑓 ′(𝑥)
𝑓(𝑥)

+
𝑚′′(𝑥)

2

}
+ 𝑜(ℎ2)

denote the bias of 𝛽0 as given in Theorem 2. Taylor expanding 𝑏′(𝛽0) about the point

𝛽0 + 𝐶ℎ(𝑥) gives,

𝑏′(𝛽0) = 𝑏′(𝛽0 + 𝐶ℎ(𝑥)) + 𝑏
′′(𝛽∗ℎ)(𝛽0 − 𝛽0 − 𝐶ℎ(𝑥))

where 𝛽∗ℎ lies between 𝛽0 and 𝛽0 +𝐶ℎ(𝑥). Again, using a Taylor expansion of 𝑏′(𝛽0 +

𝐶ℎ(𝑥)) about 𝛽0, we have

𝑏′(𝛽0 + 𝐶ℎ(𝑥)) = 𝑏
′(𝛽0) + 𝑏′′(𝛽0)𝐶ℎ(𝑥) + 𝑜(ℎ

3).



Chapter 4. Relevant Statistical Tools 67

Therefore,

√
𝑛ℎ

(
𝑏′(𝛽0)− 𝑏′(𝛽0)− 𝑏′′(𝛽0)𝐶ℎ(𝑥) + 𝑜(ℎ

3)
)
=
√
𝑛ℎ 𝑏′′(𝛽∗ℎ)(𝛽0 − 𝛽0 − 𝐶ℎ(𝑥)).

Since 𝛽∗ℎ lies between 𝛽0 and 𝛽0 + 𝐶ℎ(𝑥), and 𝐶ℎ(𝑥) → 0, it follows that 𝛽∗ℎ → 𝛽0.

Therefore, by the continuity of the function 𝑏′′, we have 𝑏′′(𝛽∗ℎ) → 𝑏′′(𝛽0). Now,

applying Slutsky’s Theorem to Theorem 2, it follows that

√
𝑛ℎ

(
𝑏′(𝛽0)− 𝑏′(𝛽0)− 𝑏′′(𝛽0)𝐶ℎ(𝑥) + 𝑜(ℎ

3)
)

=
√
𝑛ℎ 𝑏′′(𝛽∗ℎ)(𝛽0 − 𝛽0 − 𝐶ℎ(𝑥))

𝑑−→ 𝑏′′(𝛽0)𝑁
(
0, 𝜎2(𝑥;𝐾)

)
𝑑
= 𝑁

(
0, {𝑏′′(𝛽0)}2𝜎2(𝑥;𝐾)

)
as ℎ→ 0 and 𝑛ℎ→ ∞.

For the case 𝑝 = 1, we let 𝐷ℎ(𝑥) = 𝛽2ℎ
2𝜇2(𝐾) + 𝑜(ℎ2) as in Theorem 3. Then,

following a similar argument leads to

√
𝑛ℎ

(
𝑏′(𝛽0)− 𝑏′(𝛽0)− 𝑏′′(𝛽0)𝐷ℎ(𝑥) + 𝑜(ℎ

3)
)

𝑑−→ 𝑏′′(𝛽0)𝑁
(
0, 𝜎2(𝑥;𝐾)

)
𝑑
= 𝑁

(
0, {𝑏′′(𝛽0)}2𝜎2(𝑥;𝐾)

)
.

The above arguments show that the asymptotic bias and variance of �̂�0(𝑥) has

the same behavior as 𝛽0 except that the bias is multiplied by 𝑏′′(𝛽0) and the variance

by (𝑏′′(𝛽0))2. The same conclusion also holds for the estimator �̂�1(𝑥).

There are several points to note regarding the leading terms in the asymptotic bias

and variance for the locally constant (�̂�0(𝑥)) and locally linear (�̂�1(𝑥)) estimators.

We first restate the asymptotic biases and the variance:

Asymptotic Bias(�̂�0(𝑥)) = ℎ2𝜇2(𝐾)

{
𝑚′(𝑥)

𝑓 ′(𝑥)
𝑓(𝑥)

+
𝑚′′(𝑥)

2

}
,

Asymptotic Bias(�̂�1(𝑥)) = 𝑏′′(𝛽0)𝛽2ℎ2𝜇2(𝐾) ,

and, for both 𝑝 = 0, 1:

Asymptotic Var(�̂�𝑝(𝑥)) = {𝑛ℎ𝑓(𝑥)}−1𝑏′′(𝛽0)
∫
𝐾2(𝑧)𝑑𝑧 . (4.45)
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We see from the above, that for both the locally constant and locally linear fits,

sparser regions of the design density 𝑓(𝑥) result in larger variance of the estimator.

We also see that the asymptotic bias of the estimator based on the locally linear fit,

�̂�1(𝑥), does not depend on the underlying density 𝑓(𝑥) of 𝑋 , which in many ways, is

an attractive property. In the locally constant fit case, we see that the bias increases

if the true regression 𝑚(𝑥) has a high value of curvature, 𝑚′′(𝑥), at 𝑥. In both the

local constant and linear fit cases, the bias depends on ℎ2, reflecting the fact that

more smoothing results in increased bias.

For both 𝑝 = 0 and 𝑝 = 1, the variance of �̂�𝑝(𝑥) is the same. It is approximately

proportional to the inverse of the sample size times the design density near 𝑥, with

sparser design regions leading to higher variability in the estimated conditional mean.

The 𝑏′′(𝛽0) term in the variance also confirms the intuition that higher values of the

conditional variance leads to higher variability in the estimated conditional mean.

If 𝐿(𝛽(𝑥)) is the binomial log-likelihood given in (4.33) (rather than the general

one given in (4.32)), and if we assume that the number of binomial trials {𝑟𝑖}𝑛𝑖=1
are drawn from some distribution and are i.i.d., and furthermore, that the 𝑟𝑖’s are

independent of the 𝑋𝑖’s, then the only modifications we would require in Theorems

2 and 3 is that the variance formulas would each have to be multiplied by (𝐸(𝑟1))
−1.

We next consider the behavior of the locally constant (𝑝 = 0) estimator and the

locally linear (𝑝 = 1) estimator in the boundary regions. As in the case of the locally

smoothed kernel regression, we assume that the support of the kernel 𝐾 lies in [−1, 1]

and the support of the underlying density 𝑓 lies in [0, 1]. When 𝑥 is in the left

boundary, i.e. 𝑥 = 𝛼ℎ, for 0 ≤ 𝛼 < 1, define

𝜇ℓ,𝛼(𝐾) =
∫ 1

−𝛼
𝑧ℓ𝐾(𝑧)𝑑𝑧, and 𝜈ℓ,𝛼(𝐾) =

∫ 1

−𝛼
𝑧ℓ𝐾2(𝑧)𝑑𝑧 ,

and if 𝑥 is in the right boundary, i.e. 𝑥 = 1−𝛼ℎ, the integration of the above is from
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−1 to 𝛼.

Theorem 4 (Fan et al. (1995)) Suppose conditions 1, 2 and 3 above hold and that

𝑝 = 0. If 𝑥 is a boundary point of the design density, then as ℎ→ 0 and 𝑛ℎ→ ∞,

√
𝑛ℎ

𝜎0,𝛼(𝑥;𝐾)

[
(𝛽0 − 𝛽0)− 𝑚

′(𝑥)ℎ𝜇1,𝛼(𝐾)

𝑏′′(𝛽0)𝜇0,𝛼(𝐾)
+ 𝑜(1)

]
𝑑−→ 𝑁 (0, 1)

where

𝜎20,𝛼(𝑥;𝐾) =
𝜈0,𝛼(𝐾)

𝑏′′(𝛽0)𝑓(𝑥)𝜇20,𝛼(𝐾)
.

Theorem 5 (Fan et al. (1995)) Suppose conditions 1, 2 and 3 above hold and that

𝑝 = 1. If 𝑥 is an interior point of the design density, then as ℎ→ 0 and 𝑛ℎ→ ∞,

√
𝑛ℎ

𝜎1,𝛼(𝑥;𝐾)

(
𝛽0 − 𝛽0 − 𝛽2ℎ

2𝜇2,𝛼(𝐾)

𝜇0,𝛼(𝐾)
+ 𝑜(ℎ2)

)
𝑑−→ N (0, 1)

where

𝜎21,𝛼(𝑥;𝐾) =

(
𝜇22,𝛼(𝐾)𝜈0,𝛼(𝐾)− 2𝜇1,𝛼(𝐾)𝜇2,𝛼(𝐾)𝜈1,𝛼(𝐾) + 𝜇21,𝛼(𝐾)𝜈2,𝛼(𝐾)

)
𝑏′′(𝛽0)𝑓(𝑥)

(
𝜇0,𝛼(𝐾)𝜇2,𝛼(𝐾)− 𝜇21,𝛼(𝐾)

)2 .

(Here again, if 𝐿(𝛽(𝑥)) is the binomial log-likelihood given in (4.33), then each of the

above variance formulas would have to be multiplied by 𝐸(𝑟1)
−1.) Using arguments

similar to those following Theorems 2 and 3, we find the asymptotic biases and

variances of �̂�0(𝑥) and �̂�1(𝑥) when 𝑥 is a boundary point to be:

Asymptotic Bias(�̂�0(𝑥)) = 𝑚′(𝑥)ℎ𝜇1,𝛼(𝐾)/𝜇0,𝛼(𝐾) ,

Asymptotic Bias(�̂�1(𝑥)) = 𝑏′′(𝛽0)𝛽2ℎ2𝜇2,𝛼(𝐾)/𝜇0,𝛼(𝐾) ,

and, for 𝑝 = 0 and 𝑝 = 1,

Asymptotic Var(�̂�𝑝(𝑥)) = (𝑛ℎ)−1(𝑏′′(𝛽0))2𝜎2𝑝,𝛼(𝑥;𝐾) .

We see that for the case 𝑝 = 0, the leading bias term is of order 𝑂(ℎ2) in the

interior, but 𝑂(ℎ) in the boundary. Therefore, in terms of rates of convergence for
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the bias of �̂�0(𝑥), the location of 𝑥 makes a difference. When 𝑝 = 1 on the other

hand, the bias of �̂�1(𝑥) is proportional to ℎ2 whether 𝑥 is an interior point or a

boundary point, and so no boundary adjustment for bias is necessary.



Chapter 5

Calendaring by Distance Based

Methods

5.1 Calendaring via distance methods

In this chapter we present the first of our two key approaches for dating the documents

in the DEEDS data set. Some of the work in this chapter has been published in

Feuerverger, Hall, Tilahun and Gervers (2005, 2008).

To place our discussion here in the context of the previous chapters, we consider

the following heuristic viewpoint. We wish to associate to each document in the data

set an estimated date, so we are looking for a “model” of the form

𝑡 = 𝑚(𝒟) + 𝑒𝑟𝑟𝑜𝑟.

We are thus in some sense attempting to regress “date” on “document”. The approach

we will use here is inspired by the local polynomial models. Of course, this idea cannot

be made rigorous without a formal definition of the document space, which we will

not attempt here. One consequence of this will be that, for the purposes of this

71
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approach, we will be limiting ourselves to using locally constant models. The second

approach that we adopt in the next chapter will not have this limitation.

We begin by dividing up the set of DEEDS documents into three parts: a training

set, a validation set, and a test set. Letting 𝒯 , 𝒱 and 𝒜 denote the set of document

indices which identify the training, validation and test sets, respectively, we will say

that document 𝒟𝑖 belongs to the training set if its index 𝑖 ∈ 𝒯 , and likewise that it

belongs to the validation set or the test set if 𝑖 ∈ 𝒱 or 𝑖 ∈ 𝒜, respectively. Following

the definition of shingle given in Chapter 3, Section 3.3.2, for a given document 𝒟,

define 𝒮𝑘(𝒟) to be the set of distinct k-shingles of 𝒟 and define 𝑠𝑘(𝒟) to be the set

of all k-shingles of 𝒟.

The method proposed in this chapter will be based on measures of similarity

between documents. (Various distance measures on documents were described in

Chapter 3). The underlying idea is that document distance measures capture the

essential differences between documents. Suppose then that our aim is to estimate

the date 𝑡𝑖 of a given document 𝒟𝑖, 𝑖 /∈ 𝒯 . Let 𝑘 be the order of the shingle size we

are using. Let 𝑑𝑘(𝑖, 𝑗) denote the distance between the document 𝒟𝑖 and a document

𝒟𝑗, for some 𝑗 ∈ 𝒯 . Within 𝒯 , the associated dates 𝑡𝑗 are known. We next define

a kernel weight on the dates of the documents 𝒟𝑗 based on their distances to the

document 𝒟𝑖 as follow:

𝑎(𝑖, 𝑗) = 𝑎(𝑖, 𝑗∣ℎ1, . . . , ℎ𝑟) =
𝑟∏

𝑘=1

𝐾ℎ𝑘
(𝑑𝑘(𝑖, 𝑗)) . (5.1)

Here 𝐾 is a non-negative, non-increasing kernel function defined on the positive half-

line, and the ℎ1, . . . , ℎ𝑟 denote bandwidths. (Note that if the kernel is the normal

density function, only the non-increasing range is used.) Note also that in (5.1), all the

shingle sizes, from 𝑘 = 1 to 𝑘 = 𝑟 are now being used. The weight
∏𝑟

𝑘=1𝐾ℎ𝑘
(𝑑𝑘(𝑖, 𝑗))

proposed here is an 𝑟-dimensional multivariate kernel which is a product of symmetric
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univariate kernels, and it is therefore also symmetric. The theory for multivariate local

polynomial regression is a comparatively minor extension of the univariate case; for

further details, see Wand and Jones (1995), and Simonoff (1996).

Suppose the size of the training set is equal to 𝑛. Based on the locally con-

stant kernel regression estimator (see Chapter 4, Section 4.1.3), letting the response

𝑌𝑗 = 𝑡𝑗 be the date associated with document 𝒟𝑗, 𝑗 ∈ 𝒯 , and letting (𝑡1, . . . , 𝑡𝑛)
𝑡 =

(1, . . . , 1)𝑡 + (𝜖1, . . . , 𝜖𝑛) with covariance matrix

𝑊 = diag

[
1

𝑎 (𝑖, 1)
,

1

𝑎 (𝑖, 2)
, . . . ,

1

𝑎 (𝑖, 𝑗)
, . . . ,

1

𝑎 (𝑖, 𝑛)

]
,

we obtain the weighted least squares estimate 𝑡𝑖 for the date 𝑡𝑖 associated with doc-

ument 𝒟𝑖 given by

𝑡𝑖 ≡ 𝑡 = argmin
𝑡

∑
𝑗∈𝒯

(𝑡𝑗 − 𝑡)2𝑎(𝑖, 𝑗)

=

⎛⎝∑
𝑗∈𝒯
𝑡𝑗𝑎(𝑖, 𝑗)

⎞⎠/
⎛⎝∑

𝑗∈𝒯
𝑎(𝑖, 𝑗)

⎞⎠ . (5.2)

The properties of this estimator will be described in Section 5.4.

Here the 𝑡𝑖 represent the dates of the documents 𝒟𝑖, but in general, we can think

of the 𝑡𝑖’s as any attributes of interest, and the 𝑎(𝑖, 𝑗)’s as weights measuring the

closeness between the 𝑖𝑡ℎ and the 𝑗𝑡ℎ documents. If the attribute of interest is or-

dered categorical, such as categorical variates measuring “experience” or “ability”

of authors, then the variates can be arranged consecutively on a line with relative

distances adjusted so as to reflect prior notions of closeness. The estimator (5.2)

will then estimate the value of this attribute for the document 𝒟𝑖. If on the other

hand, the attributes are unordered categorical, as for example, the case of authorship

assignment, then we could assign the 𝑚 authors to the vertices of an 𝑚− 1 dimen-

sional simplex in Euclidean space. Prior beliefs of closeness between different authors



Chapter 5. Calendaring by Distance Based Methods 74

can be accommodated by distorting the length of the edges that connect them. The

estimator (5.2) could then be used to impute authorship to document 𝒟𝑖.

5.2 Bandwidth selection via cross-validation

We propose to use cross-validation to select the bandwidths ℎ1, . . . , ℎ𝑟 in (5.1) for

estimating the 𝑡𝑖’s, the dates associated with the documents 𝒟𝑖, 𝑖 /∈ 𝒯 . Let 𝒦(𝑖)

denote the union, over 1 ≤ 𝑘 ≤ 𝑟, of the set of all indices 𝑗 ∈ 𝒯 such that 𝑑𝑘(𝑖, 𝑗)

is among the 𝑚 smallest values of that quantity, and where the integer 𝑚 is some

small fraction of the total number of documents in the training set. Note that 𝒦(𝑖)

is a collection of nearest neighbours to 𝑖. We then determine the bandwidth values,

as well as the values of 𝑚, which minimize the cross-validation function

𝐶𝑉 (ℎ1, . . . , ℎ𝑟) =
1

∣𝒦(𝑖)∣
∑

𝑗′∈𝒦(𝑖)

(
𝑡𝑗′ − 𝑡−𝑗′

)2
, (5.3)

where

𝑡−𝑗′ ≡ 𝑡−𝑗′(ℎ1, . . . , ℎ𝑟) ≡ argmin
𝑡

∑
𝑗∈𝒯 , 𝑗 ∕=𝑗′

(𝑡𝑗 − 𝑡)2𝑎(𝑗′, 𝑗)

=

⎛⎝ ∑
𝑗∈𝒯 , 𝑗 ∕=𝑗′

𝑡𝑗𝑎(𝑗
′, 𝑗)

⎞⎠/
⎛⎝ ∑

𝑗∈𝒯 , 𝑗 ∕=𝑗′
𝑎(𝑗′, 𝑗)

⎞⎠ . (5.4)

Note that 𝑡−𝑗′ is a date estimate based on leaving out the 𝑗𝑡ℎ document from the

training set 𝒯 , and that 𝑗′ only ranges over the nearby documents in 𝒦(𝑖).

Note that the bandwidth selection process described above is local since it attempts

to determine an optimal set of bandwidths (on which to base the estimate 𝑡𝑖 of 𝑡𝑖)

separately for each document 𝒟𝑖 where the bandwidths are optimized over its nearest

neighbour 𝒦(𝑖). The advantage of this form of cross-validation is that the selected

bandwidths are then customized for each document. The search for the optimal
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bandwidths

(ℎ̂1, . . . , ℎ̂𝑟) = arg min
(ℎ1,...,ℎ𝑟)

𝐶𝑉 (ℎ1, . . . , ℎ𝑟)

were carried out over an 𝑟-dimensional grid. See the Appendix for the computing

code. We note that if we were to choose 𝐾(𝑖) = 𝒯 , then the optimal bandwidths in

the above cross-validation will be global, in the sense that (ℎ̂1, . . . , ℎ̂𝑟) will then be

the same for all 𝑖.

Note also that the cross-validation procedure described above can also be used to

estimate the mean square error 𝑠2(𝑖) of the date estimate 𝑡𝑖. Assuming (ℎ̂1, . . . , ℎ̂𝑟)

is the bandwidth vector used to estimate 𝑡𝑖, where for each 𝑗′ ∈ 𝒦(𝑖), 𝑡𝑗′ is computed

using the same bandwidth, we may define an estimator of 𝑠2(𝑖) as

𝑠2(𝑖) =

⎧⎨⎩ ∑
𝑗′∈𝒦(𝑖)

(𝑡𝑗′ − 𝑡−𝑗′)
2𝑎(𝑖, 𝑗′∣ℎ̂1, . . . , ℎ̂𝑟)

⎫⎬⎭/
⎧⎨⎩ ∑

𝑗′∈𝒦(𝑖)
𝑎(𝑖, 𝑗′∣ℎ̂1, . . . , ℎ̂𝑟)

⎫⎬⎭ . (5.5)

5.3 Numerical results

As mentioned in Chapter 1, at the time of this study, the total number of dated docu-

ments in the DEEDS data set was 3353. We now describe our original decomposition

of the 3353 DEEDS documents into 𝒱, 𝒯 and 𝒜. We systematically took every 8𝑡ℎ

document to form the validation set (𝒱), and every 9𝑡ℎ document to form the test set

(𝒜). When a document satisfied both of these criteria, (i.e. every 72𝑛𝑑 document),

it was assigned only to the validation set. We thus obtained 419 documents for the

validation set (12.5% of the total data set), and 326 documents for the test set (9.7%

of the total date set). The remaining 2608 documents (77.8% of the total data set)

formed the training set (𝒯 ).

The method used for estimating the date of a document, as described in the

previous sections, requires a training set and a test set only. (Following the discussion
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on cross-validation (Section 5.2), a validation set would have been required had we

needed to estimate prediction error for model selection, as will be the case for the

dating methodology we will employ in Chapter 6). For this reason, for the purposes

of the methodology described in this chapter, the validation set was combined with

the test set to form a larger test set. Therefore the test set for this distance-based

study contained 745 documents.

For the reasons discussed in Chapter 3, concerning the relative advantages of

correspondence distance measures of type (II) over the other commonly used distance

types, we chose to base our work here on the type (II) (𝛼 = 1) correspondence distance

measure. This is the correspondence distance that is geometrically the same as the

cosine correspondence distance, but with the additional property of being a metric

distance. We began by shingling each of the documents of the training set and of the

test set into shingle orders 𝑘, where 𝑘 = 1, 2 and 3. For each of these shingle orders,

a total of 745 × 2608 distance computations between the documents in the test set

and the documents in the training set were made. For a given single shingle order 𝑘

and an 𝑖 /∈ 𝒯 , the set 𝐾(𝑖) of neighbours was obtained by taking the set of all indices

𝑗 ∈ 𝒯 such that 𝑑𝑘(𝑖, 𝑗) are among the 𝑚 smallest values of that distance. The values

of 𝑚 ranged over 5, 10, 20, 100, 500, 1000. For a given pair of shingle orders, say for

𝑘 = 2 and 𝑘 = 3, we determined 𝐾(𝑖) by taking the union over the set of all indices

𝑗 ∈ 𝒯 such that 𝑑𝑘(𝑖, 𝑗) is among the 𝑚 smallest values for either of the shingle

orders 𝑘 = 2 or 𝑘 = 3. Here again, 𝑚 ranged over the values 5, 10, 20, 100, 500, 1000.

Throughout, we employed the standard normal kernel 𝐾(𝑥) = 1√
2𝜋

exp(−𝑥2/2), for
𝑥 ≥ 0, and the bandwidths were computed using the cross-validation method defined

in (5.3). The optimal bandwidths were found by searching over a one, two or three

dimensional grid depending on whether 𝐾(𝑖) was based one, two or three shingle

orders, respectively. Finally, we computed the mean absolute error (MAE) and the
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median absolute error (MedAE) in years, as well as the mean squared error (MSE)

between the true date and the estimated date for the 745 documents in the test set.

Tables 5.1- 5.7 summarize our findings.

In Tables 5.1 - 5.7, we have also included the concordance of correlation coefficient

between the various date estimates and the true dates. The concordance of correlation

coefficient measures the agreement between two variables, 𝑋 and 𝑌 , along the 45

degree 𝑋 = 𝑌 line. It is defined as

𝜌𝑐 =
2𝜌𝜎𝑥𝜎𝑦

𝜎2𝑥 + 𝜎
2
𝑦 + (𝜇𝑥 − 𝜇𝑦)2 (5.6)

where 𝜎2𝑥 and 𝜎2𝑦 are the variances of the two variables, 𝜇𝑥 and 𝜇𝑦 are their corre-

sponding means, and 𝜌 is the coefficient of correlation between 𝑋 and 𝑌 . (For further

details on concordance of correlation coefficient, see Lin (1989) and Lin (2000)).

The results in Tables 5.1 - 5.3 show that shingles of order 1 gives the best results.

The MAE decreases slightly as 𝑚 increases. For shingle order 1, the minimum value

of the MAE is 12.26 years and the maximum value is 12.90 years, with corresponding

𝑚 values of 1000 and 5, respectively. For all values of 𝑚,
√
MSE is around 20.5 years

and the correlation coefficient 𝜌𝑐 is around 0.9. The value of MedAE on the other

hand drops from 7.3 to 6.3 years as 𝑚 increases.

For shingle order 2, the MAE is around 14 years with an average
√
MSE value of

around 24 years. The MedAE decreases from around 7.0 years when 𝑚=5, 10 and

20, to around 6.4 years for 𝑚=500 and 1000. The concordance correlation coefficient

𝜌𝐶 is around 0.8. For shingle order 3, the MAE is around 17 years with an average
√
MSE value of around 28.5 years. The MedAE ranges from around 7.5 years (when

𝑚=500 and 1000) to 9 years when 𝑚=20. The value 𝜌𝐶 is around 0.75 for all values

of 𝑚.
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Table 5.1: The values of
√
𝑀𝑆𝐸, MAE, MedAE and 𝜌𝑐 for shingle order 1, and for 𝑚

ranging over 5, 10, 20, 100, 500 and 1000, evaluated on a test set of 745 documents.

Shingle m
√
𝑀𝑆𝐸 MAE MedAE 𝜌𝑐

order (test set) (test set) (test set) (test set)

1 5 20.89 12.90 7.30 0.88

1 10 20.60 12.64 6.79 0.88

1 20 20.16 12.51 7.03 0.90

1 100 20.11 12.54 6.71 0.89

1 500 20.07 12.33 6.42 0.89

1 1000 20.38 12.26 6.27 0.89

Table 5.2: The values of
√
𝑀𝑆𝐸, MAE, MedAE and 𝜌𝑐 for shingle order 2, and for 𝑚

ranging over 5, 10, 20, 100, 500 and 1000, evaluated on a test set of 745 documents.

Shingle m
√
𝑀𝑆𝐸 MAE MedAE 𝜌𝑐

order (test set) (test set) (test set) (test set)

2 5 24.40 14.56 6.97 0.83

2 10 24.41 14.55 7.26 0.83

2 20 23.81 14.21 7.22 0.83

2 100 23.76 14.02 6.96 0.84

2 500 23.72 13.79 6.35 0.84

2 1000 23.96 13.90 6.37 0.84
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Table 5.3: The values of
√
𝑀𝑆𝐸, MAE, MedAE and 𝜌𝑐 for shingle order 3, and for 𝑚

ranging over 5, 10, 20, 100, 500 and 1000, evaluated on a test set of 745 documents.

Shingle m
√
𝑀𝑆𝐸 MAE MedAE 𝜌𝑐

order (test set) (test set) (test set) (test set)

3 5 29.02 17.51 8.94 0.74

3 10 28.65 17.04 8.60 0.75

3 20 28.74 17.21 9.00 0.75

3 100 28.40 16.82 8.60 0.75

3 500 28.33 16.55 7.55 0.76

3 1000 28.52 16.64 7.17 0.76

Table 5.4: The values of
√
𝑀𝑆𝐸, MAE, MedAE and 𝜌𝑐 for the pair of shingle orders

1 and 2, and for 𝑚 ranging over 5, 10, 20, 100, 500 and 1000, evaluated on a test set

of 745 documents.

Shingle m
√
𝑀𝑆𝐸 MAE MedAE 𝜌𝑐

orders (test set) (test set) (test set) (test set)

1 & 2 5 21.67 12.89 6.46 0.87

1 & 2 10 20.65 12.20 6.30 0.88

1 & 2 20 20.58 12.30 6.49 0.88

1 & 2 100 20.23 12.10 6.31 0.89

1 & 2 500 20.48 12.12 6.00 0.89

1 & 2 1000 20.90 12.26 6.00 0.88
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Table 5.5: The values of
√
𝑀𝑆𝐸, MAE, MedAE and 𝜌𝑐 for the pair of shingle orders

1 and 3, and for 𝑚 ranging over 5, 10, 20, 100, 500 and 1000, evaluated on a test set

of 745 documents.

Shingle m
√
𝑀𝑆𝐸 MAE MedAE 𝜌𝑐

orders (test set) (test set) (test set) (test set)

1 & 3 5 22.42 13.35 7.29 0.86

1 & 3 10 22.09 13.02 7.12 0.86

1 & 3 20 21.75 12.97 7.13 0.87

1 & 3 100 21.73 12.92 6.94 0.87

1 & 3 500 21.80 12.74 6.00 0.87

1 & 3 1000 22.30 12.87 5.90 0.87

Table 5.6: The values of
√
𝑀𝑆𝐸, MAE, MedAE and 𝜌𝑐 for the pair of shingle orders

2 and 3, and for 𝑚 ranging over 5, 10, 20, 100, 500 and 1000, evaluated on a test set

of 745 documents.

Shingle m
√
𝑀𝑆𝐸 MAE MedAE 𝜌𝑐

orders (test set) (test set) (test set) (test set)

2 & 3 5 26.47 15.77 7.85 0.79

2 & 3 10 26.01 15.29 7.10 0.80

2 & 3 20 25.77 15.23 7.49 0.80

2 & 3 100 25.52 14.86 6.80 0.81

2 & 3 500 25.63 14.81 6.19 0.81

2 & 3 1000 25.73 14.81 6.15 0.81
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Table 5.7: The values of
√
𝑀𝑆𝐸, MAE, MedAE and 𝜌𝑐 for a combination of shingle

orders 1,2 and 3, and for 𝑚 ranging over 5, 10, 20, 100, 500 and 1000, evaluated on

a test set of 745 documents.

Shingle m
√
𝑀𝑆𝐸 MAE MedAE 𝜌𝑐

orders (test set) (test set) (test set) (test set)

1 & 2 & 3 5 25.70 15.22 7.92 0.80

1 & 2 & 3 10 25.38 15.00 7.92 0.80

1 & 2 & 3 20 25.40 15.09 8.18 0.80

1 & 2 & 3 100 25.39 14.93 7.64 0.80

1 & 2 & 3 500 25.47 14.92 7.37 0.81

1 & 2 & 3 1000 25.52 14.92 7.26 0.81

Tables 5.4 - 5.6 show that among the combinations of two shingle orders, orders 1

and 2 give the best MAE results, with average MAE of around 12.3 years. Specifically,

the minimum MAE is 12.1 years and occurs when 𝑚=100, and the maximum MAE

is 12.9 years when 𝑚=5. The
√
MSE is around 20.7 years and the MedAE is at 6.5

years when 𝑚 = 5 and drops to 6 years when 𝑚=500 and 1000. The value of 𝜌𝑐 also

remains stable at around 0.88 for all values of 𝑚. The combination of shingle orders

of 1 and 3 results in an average MAE of around 13.0 years, and
√
MSE of around 22.0

years. The MedAE ranges from 5.9 to 7.1 years, with smaller values of MedAE being

attained at larger values of 𝑚. The value of 𝜌𝑐 is stable at 0.86. The combination

of shingle orders 2 and 3 results in an average MAE of around 15.0 years. For this

combination of shingle orders, the minimum MAE is 14.8 years when 𝑚=500 and

1000, and the maximum MAE is 15.8 years when 𝑚=5. The
√
MSE is around 25.0

years. The MedAE ranges from 7.9 to 6.2, and here again, smaller values of MedAE
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are attained at larger values of 𝑚. The value of 𝜌𝑐 is at around 0.80 for all values of

𝑚.

For the combination of shingle orders 1,2 and 3, Table 5.7 shows that the value of

the
√
MSE is around 25.5 years for all values of 𝑚, and the MAE is around 15 years.

The MedAE is around 8 years, decreasing slightly as m increases. The average value

of 𝜌𝑐 is about 0.80.

As can be seen from the values of
√
MSE, MAE and 𝜌𝑐, the date estimates based

on shingle order 1 performed the best among all shingle orders, and the combination

of shingle orders 1 and 2 performed the best among the combinations of shingle orders.

We note that no significant improvement is gained over the results of shingle order 1

by taking the combination of shingle orders 1 and 2. This is likely related to the fact

that the performance based on shingle order 2 alone is poorer than that of shingle

order 1. Similarly, the shingle combination 1,2 and 3 performed poorly compared

to the shingle 1 order and to the shingle order combination 1 and 2. We also note

here that the mean year for the training documents is around 1246 years, and if this

value was simply used as the date estimate for the documents in the test set, the

MAE would be about 37 years, the
√
MSE would be around 47 years and the MedAE

would be around 24.5 years. Furthermore, Tables 5.1 - 5.7 also indicate that for given

shingle orders, for the most part, the MAE’s and MSE’s (and to some extent the

MedAE’s) are fairly robust against the choice of 𝑚. This is useful information, since

the date estimation can therefore be based on smaller values of 𝑚 (and hence shorter

computation times) without too much sacrifice in accuracy to the date estimation.

Figures 5.1, 5.2 and 5.3 are plots of the (presumed) true document dates versus

date estimates based on shingle order 1 (𝑚 = 500), and on the combination of shingle

orders 1 and 2 (𝑚 = 100), and the combination of shingle orders 1, 2 and 3 (𝑚 = 10),

respectively. In all of the plots, and particularly in Figure 5.3, we can see evidence of
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a positive edge bias on the left, and a slightly negative edge bias on the right.

The descriptions of the computer codes used in this section can be found in the

appendix.
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Figure 5.1: True document date versus date estimates for the 745 documents in the test set based

on shingle order 1, and m=500. Solid line indicates the X=Y axis.
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Figure 5.2: True document date versus date estimates for the 745 documents in the test set based

on a combination of shingle order 1 and 2, and m=100. Solid line indicates the X=Y axis.
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Figure 5.3: True document date versus date estimates for the 745 documents in the test set based

on a combination of shingle order 1, 2 and 3, and m=10. Solid line indicates the X=Y axis.

5.4 A Consistency result for the distance-based

date estimator

In this section we provide some conditions under which the date estimator (5.2) is a

consistent estimator of the true date of a document (see Feuerverger, Hall, Tilahun

and Gervers (2008).) Let 𝒟0 be an undated document written at time 𝑡0. Let the

document pair (𝒟0,𝒟) denote (𝒟𝑖,𝒟𝑗) where 𝒟𝑖 = 𝒟0 and where 𝒟𝑗 = 𝒟 is a

randomly chosen, dated document. Let △𝑙 denote the distance 𝑑𝑙(𝑖, 𝑗) between the

paired documents (𝒟𝑖,𝒟𝑗). We will assume, that because the possible number of

documents that can be produced using the words of the dictionary is large, 𝑑𝑙(𝑖, 𝑗) to

be continuously distributed in [0, 1]. We propose to model the date T of the document
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𝒟 and the distances △𝑙 by the vector (𝑇,△1, . . . ,△𝑟) distributed continuously in the

region (0,∞)× [0, 1]𝑟. The training documents are assumed to be i.i.d.

Given the above setting, we will show that the kernel date estimator (5.2) will be a

consistent estimator to the unknown date 𝑡0 provided the following four assumptions

hold:

(A) For a given neighbourhood of the distances, △1, . . . ,△𝑟, the expectation of the

mean of T converges to 𝑡0 as the size of these neighbourhoods shrinks to zero. This

condition is a statement of the “asymptotic unbiasedness” of the date of a random

document 𝒟. Formally,

𝐸 (𝑇𝐼(△1 ≤ 𝛿1, . . . ,△𝑟 ≤ 𝛿𝑟))
𝑃 (△1 ≤ 𝛿1, . . . ,△𝑟 ≤ 𝛿𝑟) → 𝑡0 (5.7)

as 𝛿1, . . . , 𝛿𝑟 → 0.

(B) For a given neighbourhood of distances, △1, . . . ,△𝑟, the second moment of T

remains bounded as the size of the neighbourhood shrinks to zero. This condition is

a statement of an assumption of finite variance. Stated formally,

𝐸 (𝑇 2𝐼(△1 ≤ 𝛿1, . . . ,△𝑟 ≤ 𝛿𝑟))
𝑃 (△1 ≤ 𝛿1, . . . ,△𝑟 ≤ 𝛿𝑟) <∞ (5.8)

as 𝛿1, . . . , 𝛿𝑟 → 0.

(C) For each 𝑐 > 1 ,

lim sup
𝛿1,...,𝛿𝑟→0

𝑃 (△1 ≤ 𝑐𝛿1, . . . ,△𝑟 ≤ 𝑐𝛿𝑟)
𝑃 (△1 ≤ 𝛿1, . . . ,△𝑟 ≤ 𝛿𝑟) <∞. (5.9)

This is a technical condition on the distribution of the dates of the training documents.

(D) We also assume that the kernel 𝐾 is bounded, continuous, compactly sup-

ported, and nonincreasing on the positive real line such that for some 𝑥0 ≥ 0,

𝐾(𝑥0) > 0; that the training documents 𝒟𝑗, 𝑗 ∈ 𝒯 are independent and identically

distributed as 𝒟; and that the number of elements in the training set 𝑁(𝒯 ) increases
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to infinity but in a manner such that

𝑁(𝒯 )𝑃 (△1 ≤ 𝛿1, . . . ,△𝑟 ≤ 𝛿𝑟) → ∞ (5.10)

as the bandwidth 𝛿1, . . . , 𝛿𝑟 → 0.

Theorem 6 If conditions (A) to (D) are satisfied, the estimator 𝑡𝑖 defined in (5.2)

is a consistent estimator of 𝑡0, the true date of document 𝒟0; that is, 𝑡𝑖
𝑝−→ 𝑡0.

Proof: It suffices to prove that the theorem holds for a kernel 𝐾 expressible as

a finite, positive linear combination of the form 𝐿(𝑥) = 𝐼(0 < 𝑥 ≤ 𝑐), 𝑐 > 0, since

functions of this form can be used to approximate a kernel as defined in (D). Let

𝐴𝑛 =
∑
𝑗∈𝒯
𝑡𝑗𝑎(𝑖, 𝑗) and 𝐵𝑛 =

∑
𝑗∈𝒯
𝑎(𝑖, 𝑗),

where

𝑎(𝑖, 𝑗) =
𝑛∑

𝑘=1

𝛼𝑘𝐼
(
△1(𝑖, 𝑗) ≤ 𝛿(𝑘)1 , . . . ,△𝑟(𝑖, 𝑗) ≤ 𝛿(𝑘)𝑟

)
.

Let

𝜹 = (𝛿1, . . . , 𝛿𝑟), 𝜹(𝑘) = (𝛿
(𝑘)
1 , . . . , 𝛿

(𝑘)
𝑟 ), △ = (△1 . . . ,△𝑟) ,

and

𝜋 (𝜹) = 𝑃 (△1 ≤ 𝛿1, . . . ,△𝑟 ≤ 𝛿𝑟) .

We will prove that

𝐴𝑛

𝑁(𝒯 )
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))

𝑝−→ 𝑡0

and

𝐵𝑛

𝑁(𝒯 )
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))

𝑝−→ 1

when the conditions from (A) to (D) are satisfied. The result that 𝐴𝑛/𝐵𝑛
𝑝−→ 𝑡0 is

then an immediate consequence.
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From conditions (A) and (B), it follows that

𝐸(𝐴𝑛) = 𝑁(𝒯 )𝐸

(
𝑇

𝑛∑
𝑘=1

𝛼𝑘𝐼
(
△ ≤ 𝜹(𝑘)

))
= 𝑁(𝒯 )

𝑛∑
𝑘=1

𝛼𝑘𝐸
(
𝑇𝐼

(
△ ≤ 𝜹(𝑘)

))

= 𝑁(𝒯 )
𝑛∑

𝑘=1

𝛼𝑘{𝑡0 + 𝑜(1)}𝜋
(
𝜹(𝑘)

)
,

and

Var(𝐴𝑛) = 𝑁(𝒯 )Var

(
𝑇

𝑛∑
𝑘=1

𝛼𝑘𝐼
(
△ ≤ 𝜹(𝑘)

))

= 𝑁(𝒯 )
𝑛∑

𝑘=1

𝛼2𝑘 Var
(
𝑇𝐼

(
△ ≤ 𝜹(𝑘)

))
+2𝑁(𝒯 )

∑
1≤𝑗<𝑙≤𝑛

Cov
(
𝛼𝑗𝑇𝐼

(
△ ≤ 𝜹(𝑗)

)
, 𝛼𝑙𝑇𝐼

(
△ ≤ 𝜹(𝑙)

))

≤
𝑛∑

𝑘=1

𝛼2𝑘 𝑂
(
𝑁(𝒯 )𝜋

(
𝜹(𝑘)

))
+ 2𝑁(𝒯 )

∑
1≤𝑗<𝑙≤𝑛

𝛼𝑗𝛼𝑙𝐸
(
𝑇 2𝐼

(
△ ≤ h(𝑙,𝑗)

))

≤
𝑛∑

𝑘=1

𝛼2𝑘 𝑂
(
𝑁(𝒯 )𝜋

(
𝜹(𝑘)

))
+ 2

∑
1≤𝑗<𝑙≤𝑛

𝛼𝑗𝛼𝑙𝑂
(
𝑁(𝒯 )𝜋

(
h(𝑙,𝑗)

))

where h(𝑙,𝑗) = min
(
𝜹(𝑙), 𝜹(𝑗)

)
. Moreover,

𝐸(𝐵𝑛) = 𝑁(𝒯 )𝐸

(
𝑛∑

𝑘=1

𝛼𝑘𝐼(△ ≤ 𝜹(𝑘))

)
=

𝑛∑
𝑘=1

𝛼𝑘𝑁(𝒯 )𝜋(𝜹(𝑘))

and

Var(𝐵𝑛) = 𝑁(𝒯 )Var

(
𝑛∑

𝑘=1

𝛼𝑘𝐼(△ ≤ 𝜹(𝑘))

)
= 𝑁(𝒯 )

𝑛∑
𝑘=1

𝛼2𝑘 Var
(
𝐼(△ ≤ 𝜹(𝑘))

)
+2𝑁(𝒯 )

∑
1≤𝑗<𝑙≤𝑛

𝛼𝑗𝛼𝑙Cov
(
𝐼(△ ≤ 𝜹(𝑗)) , 𝐼(△ ≤ 𝜹(𝑙))

)

≤ 𝑁(𝒯 )
𝑛∑

𝑘=1

𝛼2𝑘𝜋(𝜹
(𝑘)) + 2𝑁(𝒯 )

∑
1≤𝑗<𝑙≤𝑛

𝛼𝑗𝛼𝑙𝜋
(
h(𝑙,𝑗)

)
.

Using Chebychev’s inequality, for a given 𝜖 > 0,

𝜖2𝑃

(∣∣∣∣∣ 𝐴𝑛

𝑁(𝒯 )
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))

− 𝑡0
∣∣∣∣∣ > 𝜖

)
≤ 𝐸

(
𝐴2

𝑛

𝑁2(𝒯 )[
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))]2

)

− 2𝑡0𝐸

(
𝐴𝑛

𝑁(𝒯 )
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))

)
+ 𝑡20.
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From the previous inequalities and condition (C), it follows that

𝐸

(
𝐴2

𝑛

𝑁2(𝒯 )[
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))]2

)
=

Var(𝐴𝑛) + 𝐸
2(𝐴𝑛)

𝑁2(𝒯 )[
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘)) ]2

≤
∑𝑛

𝑘=1 𝛼
2
𝑘 𝑂

(
𝑁(𝒯 )𝜋

(
𝜹(𝑘)

))
+ 2

∑
1≤𝑗<𝑙≤𝑛 𝛼𝑗𝛼𝑙 𝑂

(
𝑁(𝒯 )𝜋

(
h(𝑙,𝑗)

))
𝑁2(𝒯 )[

∑𝑛
𝑘=1 𝛼𝑘𝜋(𝜹

(𝑘))]2

+
[
∑𝑛

𝑘=1 𝛼𝑘{𝑡0 + 𝑜(1)}𝑁(𝒯 )𝜋
(
𝜹(𝑘)

)
]2

𝑁2(𝒯 )[
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))]2

≤
𝛼21 𝑂

(
𝑁(𝒯 )𝜋

(
𝜹(1)

))
𝑁2(𝒯 )𝛼21𝜋

2
(
𝜹(1)

) +
𝛼22 𝑂

(
𝑁(𝒯 )𝜋

(
𝜹(2)

))
𝑁2(𝒯 )𝛼22𝜋

2
(
𝜹(2)

) + ⋅ ⋅ ⋅+
𝛼2𝑛 𝑂

(
𝑁(𝒯 )𝜋

(
𝜹(𝑛)

))
𝑁2(𝒯 )𝛼2𝑛𝜋

2
(
𝜹(𝑛)

)

+
2
∑

1<𝑗≤𝑛 𝛼𝑗𝛼1 𝑂
(
𝑁(𝒯 )𝜋

(
h(1,𝑗)

))
2𝑁2(𝒯 )

∑
1<𝑗≤𝑛 𝛼𝑗𝛼1𝜋

(
𝜹(1)

)
𝜋
(
𝜹(𝑗)

) +
2
∑

2<𝑗≤𝑛 𝛼𝑗𝛼2 𝑂
(
𝑁(𝒯 )𝜋

(
h(2,𝑗)

))
2𝑁2(𝒯 )

∑
2<𝑗≤𝑛 𝛼𝑗𝛼2𝜋

(
𝜹(2)

)
𝜋
(
𝜹(𝑗)

)

+ ⋅ ⋅ ⋅+ 2
∑

𝑛−1<𝑗≤𝑛 𝛼𝑗𝛼𝑛−1 𝑂
(
𝑁(𝒯 )𝜋

(
h(𝑛−1,𝑗)

))
2𝑁2(𝒯 )

∑
𝑛−1<𝑗≤𝑛 𝛼𝑗𝛼𝑛−1𝜋

(
𝜹(𝑛−1)

)
𝜋
(
𝜹(𝑗)

) + {𝑡0 + 𝑜(1)}2

=
𝑂
(
𝑁(𝒯 )𝜋

(
𝜹(1)

))
𝑁2(𝒯 )𝜋2

(
𝜹(1)

) +
𝑂
(
𝑁(𝒯 )𝜋

(
𝜹(2)

))
𝑁2(𝒯 )𝜋2

(
𝜹(2)

) + ⋅ ⋅ ⋅+ 𝑂
(
𝑁(𝒯 )𝜋

(
𝜹(𝑛)

))
𝑁2(𝒯 )𝜋2

(
𝜹(𝑛)

)

+

∑
1<𝑗≤𝑛 𝛼𝑗 𝑂

(
𝑁(𝒯 )𝜋

(
h(1,𝑗)

))
𝑁2(𝒯 )

∑
1<𝑗≤𝑛 𝛼𝑗𝜋(𝜹

(1))𝜋(𝜹(𝑗))
+

∑
2<𝑗≤𝑛 𝛼𝑗 𝑂

(
𝑁(𝒯 )𝜋

(
h(2,𝑗)

))
𝑁2(𝒯 )

∑
2<𝑗≤𝑛 𝛼𝑗𝜋(𝜹

(2))𝜋(𝜹(𝑗))

+ ⋅ ⋅ ⋅+
∑

𝑛−1<𝑗≤𝑛 𝛼𝑗 𝑂
(
𝑁(𝒯 )𝜋

(
h(𝑛−1,𝑗)

))
𝑁2(𝒯 )

∑
𝑛−1<𝑗≤𝑛 𝛼𝑗𝜋(𝜹

(𝑛−1))𝜋(𝜹(𝑗))
+ {𝑡0 + 𝑜(1)}2

−→ 𝑡20 as 𝜹 −→ 0 and 𝑁(𝒯 )𝜋(𝜹) −→ ∞.

Also,

−2𝑡0𝐸(𝐴𝑛)

𝑁(𝒯 )
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))

=
−2𝑡0

𝑁(𝒯 )
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))

{
𝑛∑

𝑘=1

𝛼𝑘{𝑡0 + 𝑜(1)}𝑁(𝒯 )𝜋(𝜹(𝑘))

}
= −2𝑡20 + 𝑜(1) .
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Therefore, as 𝜹 −→ 0 and 𝑁(𝒯 )𝜋(𝜹) −→ ∞,

𝜖2𝑃

(∣∣∣∣∣ 𝐴𝑛

𝑁(𝒯 )
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))

− 𝑡0
∣∣∣∣∣ > 𝜖

)
−→ 𝑡20 − 2𝑡20 + 𝑡

2
0 = 0, (5.11)

and we conclude that 𝐴𝑛/𝑁(𝒯 )
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘)) converges in probability to 𝑡0.

Employing Chebychev’s inequality once again,

𝜖2𝑃

(∣∣∣∣∣ 𝐵𝑛

𝑁(𝒯 )
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))

− 1

∣∣∣∣∣ > 𝜖
)

≤ 𝐸

(
𝐵2

𝑛

𝑁2(𝒯 )[
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))]2

)

− 2𝐸

(
𝐵𝑛

𝑁(𝒯 )
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))

)
+ 1.

From the bounds found in computing Var(𝐵𝑛) and 𝐸(𝐵𝑛), and condition (C),

𝐸

(
𝐵2

𝑛

𝑁2(𝒯 )[
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))]2

)
=

Var(𝐵𝑛) + 𝐸
2(𝐵𝑛)

𝑁2(𝒯 )[
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))]2

≤ 𝑁(𝒯 )
∑𝑛

𝑘=1 𝛼
2
𝑘𝜋(𝜹

(𝑘)) + 2𝑁(𝒯 )
∑

1≤𝑗<𝑙≤𝑛 𝛼𝑗𝛼𝑙𝜋
(
h(𝑙,𝑗)

)
𝑁2(𝒯 )[

∑𝑛
𝑘=1 𝛼𝑘𝜋(𝜹

(𝑘))]2

+
[𝑁(𝒯 )

∑𝑛
𝑘=1 𝛼𝑘𝜋(𝜹

(𝑘))]2

𝑁2(𝒯 )[
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))]2

≤ 𝛼21𝜋(𝜹
(1))

𝑁(𝒯 )𝛼21𝜋
2(𝜹(1))

+
𝛼22𝜋(𝜹

(2))

𝑁(𝒯 )𝛼22𝜋
2(𝜹(2))

+ ⋅ ⋅ ⋅+ 𝛼2𝑛𝜋(𝜹
(𝑛))

𝑁(𝒯 )𝛼2𝑛𝜋
2(𝜹(𝑛))

+

∑
1<𝑗≤𝑛 𝛼𝑗𝛼1𝜋(h

(1,𝑗))

𝑁(𝒯 )
∑

1<𝑗≤𝑛 𝛼𝑗𝛼1𝜋(𝜹
(1))𝜋(𝜹(𝑗))

+

∑
2<𝑗≤𝑛 𝛼𝑗𝛼2𝜋(h

(2,𝑗))

𝑁(𝒯 )
∑

2<𝑗≤𝑛 𝛼𝑗𝛼2𝜋(𝜹
(2))𝜋(𝜹(𝑗))

+ ⋅ ⋅ ⋅+
∑

𝑛−1<𝑗≤𝑛 𝛼𝑗𝛼𝑛−1𝜋(h(𝑛−1,𝑗))

𝑁(𝒯 )
∑

𝑛−1<𝑗≤𝑛 𝛼𝑗𝛼𝑛−1𝜋(𝜹
(𝑛−1))𝜋(𝜹(𝑗))

+ 1

−→ 1 as 𝜹 −→ 0 and 𝑁(𝒯 )𝜋(𝜹) −→ ∞.

Also,

−2𝐸(𝐵𝑛)

𝑁(𝒯 )
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))

=
−2𝑁(𝒯 )

∑𝑛
𝑘=1 𝛼𝑘𝜋(𝜹

(𝑘))

𝑁(𝒯 )
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))

= −2.
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Therefore,

𝜖𝑃

(∣∣∣∣∣ 𝐵𝑛

𝑁(𝒯 )
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘))

− 1

∣∣∣∣∣ > 𝜖
)
−→ 1− 2 + 1 = 0

and so we conclude that 𝐵𝑛/𝑁(𝒯 )
∑𝑛

𝑘=1 𝛼𝑘𝜋(𝜹
(𝑘)) converges to 1 in probability. Fi-

nally, using Slutsky’s theorem,

𝐴𝑛

𝐵𝑛

𝑝−→ 𝑡0 as 𝜹 −→ 0 and 𝑁(𝒯 )𝜋(𝜹) −→ ∞,

which gives the required result.



Chapter 6

Calendaring by Maximum

Prevalence

Following the notation established in Chapter 5, we let 𝒯 , 𝒱 and 𝒜 denote the

training, validation, and test sets, respectively. As before, we will write 𝑖 ∈ 𝒯 to

mean 𝒟𝑖 ∈ 𝒯 . Following the definition in Chapter 3, Section 3.3.2, let 𝑠𝑘(𝒟) denote

the set of shingles of order 𝑘 of document 𝒟, where the elements of 𝑠𝑘(𝒟) are not

necessarily distinct. For a given shingle order 𝑘, consider the fixed shingle 𝑠 ∈ 𝑠𝑘(𝒟).

Let 𝑛𝑠(𝒟) denote the number of times the shingle 𝑠 occurs in 𝑠𝑘(𝒟), and let 𝑁(𝒟)

denote the total number of elements in the set 𝑠𝑘(𝒟) (in this notation, the dependence

of 𝑁(𝒟) on 𝑘 is suppressed). Note that if the number of words in document 𝒟 equals

𝑅 , then 𝑁(𝒟) = 𝑅− 𝑘 + 1.

In this chapter we propose a method to estimate the date of a document 𝒟 using

a local polynomial GLM model (specifically, binomial) in a logistic regression frame-

work. We let 𝑡𝒟 denote the actual date associated with document 𝒟. Let 𝑛 be the

number of documents in the training set. For a fixed shingle 𝑠, we will think of the

sequence of random variable triples (𝑛𝑠(𝒟𝑖), 𝑁(𝒟𝑖), 𝑡𝒟𝑖
), 𝑖 = 1, 2, . . . , 𝑛, as being in-

92
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dependent realizations from a population represented as (𝑛𝑠(𝒟), 𝑁(𝒟), 𝑡𝒟). We will

assume that the elements of 𝑠𝑘(𝒟) occur independently of each other, in the sense

that the occurrence of any one particular 𝑠 in 𝑠𝑘(𝒟) does not affect the probabil-

ity of occurrence of any other 𝑠 in 𝑠𝑘(𝒟). (We acknowledge that this independence

assumption is somewhat strong. However, studies have shown (see Domingos and

Pazzani, 1996) the suprisingly good performance of certain classification problems

under the assumption of independence of attributes, when clearly the attributes are

highly dependent).

For each fixed 𝑠, we require an estimate �̂�𝑠(𝑡) of 𝜋𝑠(𝑡), namely the frequency, i.e.,

the probability of occurrence of the shingle 𝑠 as a function of time 𝑡. (Here 𝜋𝑠(𝑡)

represents the “true” proportion of the occurrence of shingle 𝑠 among all shingles

that have (in principle) occurred at time 𝑡.) The estimate �̂�𝑠(𝑡) will be based on the

training data set 𝒯 and it will be computed either as in (4.35) or as in (4.44) (with

an associated bandwidth value ℎ) depending on whether the estimate is based on

locally constant or locally linear polynomial regression. Strictly speaking, for a fixed

shingle 𝑠 and shingle order 𝑘, we should write �̂�𝑠(𝑡) ≡ �̂�𝑠,ℎ,𝑘(𝑡). The time scale 𝑡 of

the DEEDS documents ranges over the middle ages – approximately 11th century

to 15th century – and we therefore assume that the probability of such documents

occurring outside this time range is zero.

We next define

𝜋𝒟(𝑡) =
∏

𝑠∈𝑠𝑘(𝒟)
𝜋𝑠(𝑡)

∏
𝑠/∈𝑠𝑘(𝒟)

(1− 𝜋𝑠(𝑡)) . (6.1)

The function 𝜋𝒟(𝑡) represents the probability of the occurrence of document 𝒟 as

function of time 𝑡. Strictly speaking, it is the probability conditioned on the length

of the document. The formulation (6.1) is based on both those shingles that occurred

in the document 𝒟 as well as those shingles that did not occur in 𝒟. The second
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product on the right hand side may be thought of as being over all shingles occurring

in the training set (but not in 𝒟). Alternately, it may be thought of as being over

all shingles that could, in principle, have occurred. We shall see however that this

second factor is immaterial. For purposes of clarification, we note that if the shingle

𝑠 was to occur, for instance, three times in 𝑠𝑘(𝒟), then we use 𝜋3𝑠(𝑡) in (6.1).

We will estimate 𝜋𝒟(𝑡) by �̂�𝒟(𝑡) given as

�̂�𝒟(𝑡) =
∏

𝑠∈𝑠𝑘(𝒟)
�̂�𝑠(𝑡)

∏
𝑠/∈𝑠𝑘(𝒟)

(1− �̂�𝑠(𝑡)). (6.2)

The date of document 𝒟, 𝑡𝒟, will then be estimated by 𝑡𝒟 defined as

𝑡𝒟 = arg max
𝑡∈[1089,1466]

�̂�𝒟(𝑡) .

Defining 𝑡∗𝒟 to be

𝑡∗𝒟 = arg max
𝑡∈[1089,1466]

𝜋𝒟(𝑡),

in Section 6.4 we will provide sufficient conditions to have 𝑡𝒟 → 𝑡∗𝒟 as the size of

the training data set increases, and the bandwidth ℎ shrinks to zero. We use the

notation 𝑡∗𝒟, the value of 𝑡 that maximizes the probability of occurrence of document

𝒟 under our theoretical model, so as to differentiate it from the “true” date, 𝑡𝒟, of the

document 𝒟. Such a difference, between these values occurs, for example, because

𝒟 is of fixed finite length, and hence does not contain infinite information. We note

that �̂�𝒟(𝑡), and consequently 𝑡𝒟, are functions of both the shingle order 𝑘, as well as

the bandwidth value ℎ.

The bandwidth ℎ will be selected as follows: Using the documents in the validation

set 𝒱 and the given shingle order 𝑘, we assign the bandwidth ℎ = ℎ̂𝑜𝑝𝑡 to be that value

that minimizes the sum of the squared errors between the resulting document date

estimates 𝑡𝒟 ≡ 𝑡𝒟,ℎ,𝑘, and the associated true document dates, 𝑡𝒟, over the validation
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set :

ℎ̂𝑜𝑝𝑡 = argmin
ℎ

∑
𝒟∈𝒱

(𝑡𝒟,ℎ,𝑘 − 𝑡𝒟)2. (6.3)

A more adaptive form of bandwidth selection will be described in Section 6.3.

6.1 Estimating �̂�𝑠(𝑡)

We propose to estimate 𝜋𝑠(𝑡) based on a local parametric logistic regression model as

discussed in Chapter 4.

Specifically, for a given document 𝒟, we assume the conditional distribution of

𝑛𝑠(𝒟) given 𝑁(𝒟) = 𝑚 and 𝑡𝒟 = 𝑡 to be binomially distributed:

ℒ(𝑛𝑠(𝒟) ∣ 𝑁(𝒟) = 𝑚, 𝑡𝒟 = 𝑡) ∼ Bin(𝑚, 𝜋𝑠(𝑡)).

Following the results of Chapter 4, Section 4.2.1, denote the canonical transformation

of 𝜋𝑠(𝑡) as 𝜃𝑠(𝑡) = log {𝜋𝑠(𝑡)/(1− 𝜋𝑠(𝑡))}. For the locally constant (i.e. polynomial

degree 𝑝 = 0), smoothing the parameter 𝜃𝑠(𝑡) at time 𝑡 using kernel 𝐾 and bandwidth

ℎ, the local log-likelihood is given by equation (4.33) as

𝑙(𝛽0) =
∑
𝑖∈𝒯

⎧⎨⎩𝛽0𝑛𝑠(𝒟𝑖)−𝑁(𝒟𝑖)𝑏(𝛽0) + log

⎛⎜⎜⎝ 𝑁(𝒟𝑖)

𝑛𝑠(𝒟𝑖)

⎞⎟⎟⎠
⎫⎬⎭𝐾ℎ(𝑡𝒟𝑖

− 𝑡) (6.4)

where 𝑏(𝛽0) = log(1 + exp(𝛽0)). Note that 𝛽0 is the local constant value of 𝜃𝑠(𝑡).

Letting 𝛽0 = argmax𝛽0 𝑙(𝛽0), it follows that

𝛽0 = log

(
�̂�𝑠(𝑡)

1− �̂�𝑠(𝑡)
)

where

�̂�𝑠(𝑡) =
exp(𝛽0)

1 + exp(𝛽0)
=

∑
𝑖∈𝒯 𝑛𝑠(𝒟𝑖)𝐾ℎ(𝑡𝒟𝑖

− 𝑡)∑
𝑖∈𝒯 𝑁(𝒟𝑖)𝐾ℎ(𝑡𝒟𝑖

− 𝑡) . (6.5)
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(See equation (4.35).)

If on the other hand, we use the locally linear smoothing of the parameter 𝜃𝑠(𝑡),

(i.e. smoothing the parameter 𝜃𝑠(𝑡) locally by a polynomial of degree 𝑝 = 1), and then

optimize the resulting log-likelihood with respect to 𝛽0 and 𝛽1, given by equations

(4.42) and (4.43), we are then required to solve the pair of equations

∑
𝑖∈𝒯
𝑛𝑠(𝒟𝑖)𝐾ℎ(𝑡𝒟𝑖

− 𝑡) = ∑
𝑖∈𝒯

𝑁(𝒟𝑖) exp{𝛽0 + 𝛽1(𝑡𝒟𝑖
− 𝑡)}

1 + exp{𝛽0 + 𝛽1(𝑡𝒟𝑖
− 𝑡)} 𝐾ℎ(𝑡𝒟𝑖

− 𝑡)

and

∑
𝑖∈𝒯
𝑛𝑠(𝒟𝑖)(𝑡𝒟𝑖

− 𝑡)𝐾ℎ(𝑡𝒟𝑖
− 𝑡) = ∑

𝑖∈𝒯

𝑁(𝒟𝑖) exp{𝛽0 + 𝛽1(𝑡𝒟𝑖
− 𝑡)}

1 + exp{𝛽0 + 𝛽1(𝑡𝒟𝑖
− 𝑡)} (𝑡𝒟𝑖

− 𝑡)𝐾ℎ(𝑡𝒟𝑖
− 𝑡)

for every value of 𝑡. As discussed in Chapter 4, Section 4.2.1, the solution 𝛽𝑜 here is

then used to estimate �̂�𝑠(𝑡) via the inverse of the link function:

�̂�𝑠(𝑡) =
exp(𝛽0)

1 + exp(𝛽0)
.

Even though the estimate �̂�𝑠(𝑡) derived using the locally linear polynomial model

has better boundary estimation properties than that of the estimator derived using

the locally constant polynomial (see Chapter 4, Section 4.2.2 for discussions on this

issue), we only used the local constant model in this thesis so as to avoid the numerical

optimization which is necessary for the locally linear modelling (see Chapter 4, Section

4.2.1). Therefore, from this point on, �̂�𝑠(𝑡) will refer to the estimated probability of

occurrence of the shingle 𝑠 at time 𝑡 based on locally constant polynomial logistic

regression.

Before concluding this section, we make the following observation. Suppose we

model the the number of occurrences of the shingle 𝑠 at time 𝑡 as a Poisson distribution

with 𝜆(𝑡) being the rate of occurrence of the shingle 𝑠 in a reference text of length, say,

𝑟. (This is analogous to Mosteller’s and Wallace’s analysis of the Federalist papers.
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The rate 𝜇𝐻 and 𝜇𝑀 in their case referred to the rate of a particular word usage in a

text of one thousand words for Hamilton and Madison, respectively. Here, we could

choose 𝑟 to be 250, the average length of documents in the DEEDS data set). Then,

the locally smoothed log-likelihood (4.32) is given by

∑
𝑖∈𝒯

{𝑛𝑠(𝒟𝑖) log(𝜆(𝑡𝒟𝑖
)𝑁(𝒟𝑖)/𝑟)− 𝜆(𝑡𝒟𝑖

)𝑁(𝒟𝑖)/𝑟 − log(𝑛𝑠(𝒟𝑖)!)}𝐾ℎ(𝑡𝒟𝑖
− 𝑡)

=
∑
𝑖∈𝒯

{𝑛𝑠(𝒟𝑖)(𝜃(𝑡𝒟𝑖
) + log(𝑁(𝒟𝑖)/𝑟))− exp(𝜃(𝑡𝒟𝑖

))𝑁(𝒟𝑖)/𝑟 − log(𝑛𝑠(𝒟𝑖)!)}𝐾ℎ(𝑡𝒟𝑖
− 𝑡).

We denote the canonical parameter by 𝜃(𝑢) = log(𝜆(𝑢)) and 𝑏𝑝𝑜𝑖𝑠(𝜃) = exp(𝜃). If we

choose the canonical parameter to be a polynomial function of order 𝑝, for a given 𝑡,

𝜃(𝑡𝒟𝑖
) ≈ 𝛽(𝑡, 𝑡𝒟𝑖

) ≡ 𝛽0(𝑡) + 𝛽1(𝑡)(𝑡𝒟𝑖
− 𝑡) + ⋅ ⋅ ⋅+ 𝛽𝑝(𝑡)(𝑡𝒟𝑖

− 𝑡)𝑝. (6.6)

Then, from (4.32),

𝐿𝑝𝑜𝑖𝑠(𝛽(𝑡)) =
∑
𝑖∈𝒯

{ 𝑛𝑠(𝒟𝑖)(𝛽0(𝑡) + 𝛽1(𝑡)(𝑡𝒟𝑖
− 𝑡) + ⋅ ⋅ ⋅+ 𝛽𝑝(𝑡)(𝑡𝒟𝑖

− 𝑡)𝑝)

−𝑁(𝒟𝑖)

𝑟
𝑏𝑝𝑜𝑖𝑠(𝛽0(𝑡) + 𝛽1(𝑡)(𝑡𝒟𝑖

− 𝑡) + ⋅ ⋅ ⋅+ 𝛽𝑝(𝑡)(𝑡𝒟𝑖
− 𝑡)𝑝)

+𝑛𝑠(𝒟𝑖) log(𝑁(𝒟𝑖)/𝑟)− log(𝑛𝑠(𝒟𝑖)!) }𝐾ℎ(𝑡𝒟𝑖
− 𝑡) .

On the other hand, the locally smoothed log-likelihood for the binomial, 𝐿𝑏𝑖𝑛(𝛽(𝑡)),

as given in (4.33), is

𝐿𝑏𝑖𝑛(𝛽(𝑡)) =
∑
𝑖∈𝒯

{ 𝑛𝑠(𝒟𝑖)(𝛽0(𝑡) + 𝛽1(𝑡)(𝑡𝒟𝑖
− 𝑡) + ⋅ ⋅ ⋅+ 𝛽𝑝(𝑡)(𝑡𝒟𝑖

− 𝑡)𝑝)

−𝑁(𝒟𝑖)𝑏𝑏𝑖𝑛(𝛽0(𝑡) + 𝛽1(𝑡)(𝑡𝒟𝑖
− 𝑡) + ⋅ ⋅ ⋅+ 𝛽𝑝(𝑡)(𝑡𝒟𝑖

− 𝑡)𝑝)

+ log

(
𝑁(𝒟𝑖)

𝑛𝑠(𝒟𝑖)

)}
𝐾ℎ(𝑡𝒟𝑖

− 𝑡)

where 𝑏𝑏𝑖𝑛(𝜃) = log{1 + exp(𝜃)}. Denote by 𝜷(𝑡)=(𝛽0(𝑡), 𝛽1(𝑡), . . . , 𝛽𝑝(𝑡)) the values

of the 𝛽’s that maximize 𝐿𝑝𝑜𝑖𝑠(𝛽(𝑡)), and denote by 𝜷(𝑡)=(𝛽0(𝑡), 𝛽1(𝑡), . . . , 𝛽𝑝(𝑡)) the

values of the 𝛽’s that maximize 𝐿𝑏𝑖𝑛(𝛽(𝑡)). Then, for every 𝑗 = 0, 1, . . . , 𝑝,

∑
𝑖∈𝒯
𝑛𝑠(𝒟𝑖)𝐾ℎ(𝑡𝒟𝑖

− 𝑡)∂𝛽(𝑡, 𝑡𝒟𝑖
)

∂𝛽𝑗 𝜷(𝑡)
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=
∑
𝑖∈𝒯

𝑁(𝒟𝑖)

𝑟
𝑏′𝑝𝑜𝑖𝑠(𝛽0(𝑡) + 𝛽1(𝑡)(𝑡𝒟𝑖

− 𝑡) + ⋅ ⋅ ⋅+ 𝛽𝑝(𝑡)(𝑡𝒟𝑖
− 𝑡)𝑝)∂𝛽(𝑡, 𝑡𝒟𝑖

)

∂𝛽𝑗 𝜷(𝑡)
𝐾ℎ(𝑡𝒟𝑖

− 𝑡)

and

∑
𝑖∈𝒯
𝑛𝑠(𝒟𝑖)𝐾ℎ(𝑡𝒟𝑖

− 𝑡)∂𝛽(𝑡, 𝑡𝒟𝑖
)

∂𝛽𝑗 𝜷(𝑡)

=
∑
𝑖∈𝒯
𝑁(𝒟𝑖)𝑏

′
𝑏𝑖𝑛(𝛽0(𝑡) + 𝛽1(𝑡)(𝑡𝒟𝑖

− 𝑡) + ⋅ ⋅ ⋅+ 𝛽𝑝(𝑡)(𝑡𝒟𝑖
− 𝑡)𝑝)∂𝛽(𝑡, 𝑡𝒟𝑖

)

∂𝛽𝑗 𝜷(𝑡)
𝐾ℎ(𝑡𝒟𝑖

− 𝑡).

From the above it follows,

∑
𝑖∈𝒯

(
∂𝛽(𝑡, 𝑡𝒟𝑖

)

∂𝛽𝑗 𝜷(𝑡)
− ∂𝛽(𝑡, 𝑡𝒟𝑖

)

∂𝛽𝑗 𝜷(𝑡)

)
𝑛𝑠(𝒟𝑖)𝐾ℎ(𝑡𝒟𝑖

− 𝑡)

=
∑
𝑖∈𝒯
𝑁(𝒟𝑖)

{
1

𝑟
𝑏′𝑝𝑜𝑖𝑠(𝛽0(𝑡) + 𝛽1(𝑡)(𝑡𝒟𝑖

− 𝑡) + ⋅ ⋅ ⋅+ 𝛽𝑝(𝑡)(𝑡𝒟𝑖
− 𝑡)𝑝)

−𝑏′𝑏𝑖𝑛(𝛽0(𝑡) + 𝛽1(𝑡)(𝑡𝒟𝑖
− 𝑡) + ⋅ ⋅ ⋅+ 𝛽𝑝(𝑡)(𝑡𝒟𝑖

− 𝑡)𝑝)
}
(𝑡𝒟𝑖

− 𝑡)𝑗𝐾ℎ(𝑡𝒟𝑖
− 𝑡) .

Since the left hand-side of the above equation is equal to zero,

∑
𝑖∈𝒯

{𝑁(𝒟𝑖)/𝑟}
{
𝑏′𝑝𝑜𝑖𝑠(𝛽0(𝑡) + 𝛽1(𝑡)(𝑡𝒟𝑖

− 𝑡) + ⋅ ⋅ ⋅+ 𝛽𝑝(𝑡)(𝑡𝒟𝑖
− 𝑡)𝑝)

}
(𝑡𝒟𝑖

− 𝑡)𝑗𝐾ℎ(𝑡𝒟𝑖
− 𝑡)

=
∑
𝑖∈𝒯
𝑁(𝒟𝑖)

{
𝑏′𝑏𝑖𝑛(𝛽0(𝑡) + 𝛽1(𝑡)(𝑡𝒟𝑖

− 𝑡) + ⋅ ⋅ ⋅+ 𝛽𝑝(𝑡)(𝑡𝒟𝑖
− 𝑡)𝑝)

}
(𝑡𝒟𝑖

− 𝑡)𝑗𝐾ℎ(𝑡𝒟𝑖
− 𝑡)

for every 𝑗 = 0, 1, . . . , 𝑝 . This implies that if the locally smoothed log-likelihood

functions are locally constant (i.e., the polynomial in (6.6) is of order 𝑝 = 0), then

𝑏′𝑝𝑜𝑖𝑠(𝛽0(𝑡))/𝑟 = 𝑏′𝑏𝑖𝑛(𝛽0(𝑡)), that is, in the case 𝑝 = 0, the estimated probability of

occurrence of the shingle 𝑠 at time 𝑡, derived from the binomial model, is equal to the

estimated rate of occurrence of the shingle 𝑠 at time 𝑡 in a text of length 𝑟 derived

from using the Poisson.

6.2 A note on the second factor in 𝜋𝒟(𝑡)

In this section we will argue that the second factor of

𝜋𝒟(𝑡) =
∏

𝑠∈𝑠𝑘(𝒟)
𝜋𝑠(𝑡)

∏
𝑠/∈𝑠𝑘(𝒟)

(1− 𝜋𝑠(𝑡)) (6.7)
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may be omitted.

Consider the logarithm of the second factor in (6.10) :

log
∏

𝑠/∈𝑠𝑘(𝒟)
(1− 𝜋𝑠(𝑡)) =

∑
𝑠/∈𝑠𝑘(𝒟)

log(1− 𝜋𝑠(𝑡))

≈ − ∑
𝑠/∈𝑠𝑘(𝒟)

𝜋𝑠(𝑡) (6.8)

≈ −∑
𝑠

𝜋𝑠(𝑡) = −1. (6.9)

In (6.8) we have used the approximation log(1+𝑥) ≈ 𝑥 for small 𝑥. The approximation

at (6.9) follows because the number of shingles of any document 𝒟 is small compared

with the total that can occur. A typical document, for example, has on average about

200 words while the total number of distinct words in the documents of the training

set is 42,978. Consequently, only the first factor of 𝜋𝒟(𝑡) will typically be material

and we shall henceforth take

𝜋𝒟(𝑡) =
∏

𝑠∈𝑠𝑘(𝒟)
𝜋𝑠(𝑡) . (6.10)

Figure 6.1 is a plot of time 𝑡 versus
∑

𝑠 log(1− �̂�𝑠(𝑡)) where the sum over the shingles

is over all the distinct words (shingle order 1) of the documents in the training set.

As can be seen, the value of
∑

𝑠 log(1− �̂�𝑠(𝑡)) is very close to −1 for all values of 𝑡.

6.3 Bandwidth selection

At this point, we comment on the bandwidth choice, ℎ̂𝑜𝑝𝑡, defined in (6.3). Clearly,

ℎ̂𝑜𝑝𝑡 as a bandwidth choice is not fully optimal since we use this same bandwidth for

every estimate �̂�𝑠(𝑡). Ideally, there should be a different “optimal” bandwidth for

each shingle 𝑠. However, the additional work involved would be substantial and it

seems questionable based on our experience with this data that this would result in
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Figure 6.1: Date 𝑡 versus
∑

𝑠 log{(1− �̂�𝑠(𝑡))} where the sum is taken over all distinct

words from documents in the training set. There are a total of 42,978 such words.

any great improvement of our date estimates. In the remainder of this section, we

discuss how bandwidths could be chosen for each shingle.

The cross-validation technique discussed in Chapter 4, Section 4.1.7 suggests one

way to select a bandwidth for �̂�𝑠(𝑡) specific to the shingle 𝑠. Defining �̂�−𝑖,𝑠(𝑡) to be

the same as �̂�𝑠(𝑡) but with document 𝒟𝑖 of 𝒯 removed from the computation, the

cross-validation function for the fixed shingle 𝑠 is given by

CV𝑠(ℎ) = ∣𝒯 ∣−1∑
𝑖∈𝒯

(
�̂�−𝑖,𝑠(𝑡𝒟𝑖

)− 𝑛𝑠(𝒟𝑖)

𝑁(𝒟𝑖)

)2

.

The associated optimal bandwidth, ℎ𝑠,𝑐𝑣, is then defined to be

ℎ𝑠,𝑐𝑣 = argmin
ℎ

CV𝑠(ℎ),

and this bandwidth can be used in the estimate of �̂�𝑠(𝑡).
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For purposes of computational simplification, we can write

CV𝑠(ℎ) = ∣𝒯 ∣−1∑
𝑖∈𝒯

(
�̂�−𝑖,𝑠(𝑡𝒟𝑖

)− 𝑛𝑠(𝒟𝑖)

𝑁(𝒟𝑖)

)2

= ∣𝒯 ∣−1∑
𝑖∈𝒯

(∑
𝑗∈𝒯 𝑛𝑠(𝒟𝑗)𝐾ℎ(𝑡𝒟𝑗

− 𝑡𝒟𝑖
)− 𝑛𝑠(𝒟𝑖)𝐾(0)∑

𝑗∈𝒯 𝑁(𝒟𝑗)𝐾ℎ(𝑡𝒟𝑗
− 𝑡𝒟𝑖

)−𝑁(𝒟𝑖)𝐾(0)
− 𝑛𝑠(𝒟𝑖)

𝑁(𝒟𝑖)

)2

.

We note that the advantage of selecting a bandwidth using the above procedure is

that it allows us to obtain an optimal bandwidth (in the sense finding the minimizer

of CV𝑠(ℎ)) for each shingle 𝑠. Furthermore, the leave-one-out procedure would in

principle allow us to work without a validation set.

6.4 Asymptotic properties of �̂�𝑠(𝑡) and 𝑡𝒟

We now discuss some asymptotic aspects concerning the estimators �̂�𝑠(𝑡), and the

date estimator 𝑡𝒟. To state these asymptotic results, we require some additional

notation. Assume a countably infinite set of documents 𝒟1,𝒟2, . . . and consider the

increasing sequence of training sets 𝒯𝑛 = {𝒟1, ⋅ ⋅ ⋅ ,𝒟𝑛}. For each 𝑛, write ℎ𝑛 for the

bandwidth associated with the sample size 𝑛. The conditions we impose on the kernel

𝐾(⋅) and bandwidths ℎ are:

(a) sup
−∞<𝑡<∞

𝐾(𝑡) <∞,

(b) lim
∣𝑡∣→∞

∣𝑡∣𝐾(𝑡) = 0 .

We also assume that 𝑛→ ∞, ℎ𝑛 → 0 and 𝑛ℎ𝑛 → ∞. Let 𝑓(𝑡) denote the density of

𝑡𝒟, and let 𝑌𝑠(𝑡) = 𝐸 (𝑛𝑠(𝒟)∣𝑡𝒟 = 𝑡) and 𝑌 (𝑡) = 𝐸 (𝑁(𝒟)∣𝑡𝒟 = 𝑡).

Proposition 1 (Nadaraya 1964) Assume the characteristic function 𝜒(𝑡) =
∫∞
−∞ 𝑒

𝑖𝑡𝑥𝐾(𝑥)𝑑𝑥

is absolutely integrable, and let 𝑌𝑠(𝑡), 𝑌 (𝑡) and 𝑓(𝑡) be continuous on a finite interval

[𝑡𝐴, 𝑡𝐵]. Further, assume that

min
𝑡∈[𝑡𝐴,𝑡𝐵]

𝑓(𝑡) > 0 and
∞∑
𝑛=1

𝑛−2ℎ−4𝑛 <∞ ,



Chapter 6. Calendaring by Maximum Prevalence 102

and that the fourth moments of 𝑛𝑠(𝒟) and 𝑁(𝒟) exist.1 Then, with probability one

sup
𝑡∈[𝑡𝐴,𝑡𝐵 ]

∣∣∣∣∣
∑𝑛

𝑖=1 𝑛𝑠(𝒟𝑖)𝐾ℎ(𝑡𝒟𝑖
− 𝑡)∑𝑛

𝑖=1𝐾ℎ(𝑡𝒟𝑖
− 𝑡) − 𝑌𝑠(𝑡)

∣∣∣∣∣ −→ 0 (6.11)

and

sup
𝑡∈[𝑡𝐴,𝑡𝐵 ]

∣∣∣∣∣
∑𝑛

𝑖=1𝑁(𝒟𝑖)𝐾ℎ(𝑡𝒟𝑖
− 𝑡)∑𝑛

𝑖=1𝐾ℎ(𝑡𝒟𝑖
− 𝑡) − 𝑌 (𝑡)

∣∣∣∣∣ −→ 0 (6.12)

as ℎ𝑛 → 0 and 𝑛ℎ𝑛 → ∞.

Note that although our data is discrete (i.e. the dates of the documents are stated

in years) we are nonetheless treating the dates as being continuous. Furthermore,

we base our support for the assumption that the density of the dates 𝑓(𝑡) is strictly

greater than zero over the middle ages (𝑡𝐴 = 1089 to 𝑡𝐵 = 1466) on empirical obser-

vation (see Figure 1.1).

Equations (6.11) and (6.12) imply that the denominator of the expression in (6.12)

is non-zero and therefore we have, with probability one,

sup
𝑡∈[𝑡𝐴,𝑡𝐵 ]

∣∣∣∣∣
∑𝑛

𝑖=1 𝑛𝑠(𝒟𝑖)𝐾ℎ(𝑡𝒟𝑖
− 𝑡)∑𝑛

𝑖=1𝑁(𝒟𝑖)𝐾ℎ(𝑡𝒟𝑖
− 𝑡) −

𝑌𝑠(𝑡)

𝑌 (𝑡)

∣∣∣∣∣ −→ 0 .

However

𝑌𝑠(𝑡) = E(𝑛𝑠(𝒟)∣𝑡𝒟 = 𝑡) = E(E{𝑛𝑠(𝒟) ∣ 𝑡𝒟 = 𝑡, 𝑁(𝒟)} ∣ 𝑡𝒟 = 𝑡)

= E(𝑁(𝒟)𝜋𝑠(𝑡) ∣ 𝑡𝒟 = 𝑡)

= 𝜋𝑠(𝑡)E(𝑁(𝒟) ∣ 𝑡𝒟 = 𝑡)

= 𝜋𝑠(𝑡)𝑌 (𝑡). (6.13)

Therefore, with probability one

sup
𝑡∈[𝑡𝐴,𝑡𝐵 ]

(∑𝑛
𝑖=1 𝑛𝑠(𝒟𝑖)𝐾ℎ(𝑡𝒟𝑖

− 𝑡)∑𝑛
𝑖=1𝑁(𝒟𝑖)𝐾ℎ(𝑡𝒟𝑖

− 𝑡) − 𝜋𝑠(𝑡)
)
−→ 0 .

1Note: since 𝑛𝑠(𝒟) ≤ 𝑁(𝒟), we only need to require the fourth moment of 𝑁(𝒟) to be finite.
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We thus see that under appropriate assumption, our estimators �̂�𝑠(𝑡) may be

regarded as being consistent for 𝜋𝑠(𝑡). We next consider the estimator 𝑡𝒟. The method

we have employed in estimating the date of a given document 𝒟 involves estimating

the probabilities over time of each of the shingles that make up the document, and

then determining the point on the time axis at which the product of the estimated

shingle probabilities, as in (6.2) achieves their maximum value. This value, which we

denote by 𝑡𝒟, is our estimated date for the document 𝒟. We will attempt to provide

some informal justification for our use of 𝑡𝒟 as our date estimator. Firstly, however,

note that one cannot really know the “true date” of a given undated document.

Furthermore, the dating methodology we have presented is an approximation in the

sense that it neglects idiosyncratic elements such as language usage between different

type of individuals, or other such confounding elements. Moreover, we assume that

the occurrences of shingles within a given document are independent of each other.

In fact, all types of documents (so long as they deal with property transfer in the

middle ages) are incorporated into the training set.

The question we would now like to pose for our document dating procedure is:

what is the asymptotic behavior of 𝑡𝒟 as the size of the training set ∣𝒯 ∣ increases
to infinity, and the bandwidth ℎ decreases to 0 in such a way that ∣𝒯 ∣ℎ increases

to infinity. We will attempt to justify that (under our independence assumption) as

the size of the training data set 𝒯 increases, the estimated date of the document 𝑡𝒟

converges in distribution to 𝑡∗𝒟. This will hold under the following conditions (see

Kim & Pollard, 1990):

(a) �̂�𝒟(𝑡) converges in probability to 𝜋𝒟(𝑡) uniformly for 𝑡 ∈ [1089, 1466].

(b) 𝑡𝒟 = argmax𝑡 �̂�𝒟(𝑡) is 𝑂𝑝(1).

(c) 𝑡∗𝒟 is the unique maximizer of 𝜋𝒟(𝑡) on [1089, 1466].
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We also have shown that �̂�𝒟(𝑡) converges uniformly to 𝜋𝒟(𝑡) on [1089, 1466], and

the continuity of �̂�𝒟(𝑡) follows from the continuity of the kernel function 𝐾(⋅). Con-
dition (b) follows from our assumption that �̂�𝒟(𝑡) takes on the value zero outside of

the date range [1089, 1466], and takes on the values 0 ≤ �̂�𝒟(𝑡) ≤ 1 on the date range

[1089, 1466]. As for condition (c), our methodology implicitly assumes that a unique

maximizer exists as the size of the training set increases and this may be justified

on pragmatic grounds. Clearly, shingles which are “uninformative”, i.e. those used

with equal frequency across the years, or those whose frequency of use increases and

decreases multiple times, or those that are only in use at an earlier and a later time,

could, in rather untypical situations, cause condition (c) to be violated.

6.5 Numerical results

The DEEDS data set, consisting of a total of 3353 dated documents, was divided into

three sets - the training set 𝒯 , the validation set 𝒱, and the test set 𝒜. Following

the procedure described in Chapter 5, Section 3, we assigned 419 documents to the

validation set (12.5% of the total data) and 326 documents to the test set (9.7% of

the total data). The remaining 2608 documents (77.8% of the total data) form the

training set.

Dates for every document 𝒟 in the validation set 𝒱 were estimated on the basis

of the documents in the training set, using the t-distribution density function as the

kernel function:

𝐾(𝑥) =
Γ(𝜈+1

2
)√

𝜈𝜋Γ
(
𝜈
2

) (1 + 𝑥2
𝜈

)−(𝜈+1)/2

where 𝜈 is the number of degrees of freedom, and Γ is the Gamma function. Letting

𝐾ℎ(⋅) = (1/ℎ)𝐾(⋅/ℎ), we note in passing that the constant multipliers of 𝐾ℎ(𝑥) may

be ignored in the actual numerical computation of 𝜋𝑠(𝑡) in (6.5). The bandwidth
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values ℎ used in our numerical experiments ranged from ℎ = 1 to ℎ = 24, and

the degrees of freedom (d.f.) we used for the t-distribution ranged from 1 to 20.

The combination of the bandwidth and the degrees of freedom which minimized

the value of the mean squared error of the dates (MSE) on the validation set were

designated to be the “optimal” parameters, and were used as the parameters of choice

in computing the estimated dates for the documents in the test set 𝒜. The above

procedure was carried out for shingle sizes 1, 2, 3 and 4, resulting in four dating

methodologies which we will denote by 𝑀1,𝑀2,𝑀3 and 𝑀4 respectively. Table 6.1

and Table 6.2 summarize these optimal bandwidths and optimal degrees of freedom, as

well as the corresponding mean squared error (MSE), mean absolute error (MAE), and

median absolute error (MedAE) in years, and the concordance correlation coefficient,

𝜌𝑐, (see equation (5.6) for definition) between the true date and the estimated date

for documents in the validation set and the test set, respectively. For comparison

purposes we have included the results for both the validation and test sets.

As we can see from the results of the dating methodologies based on documents

from the test set, Table 6.2, method 𝑀2 performed the best - it had the smallest

MSE, MAE, MedAE and the highest value of 𝜌𝑐. Method 𝑀3 seems to be the next

best, followed by 𝑀1, and finally 𝑀4. In all cases, the MAE is consistently greater

than the MedAE, indicating that there are several documents which have a relatively

high error value. The histogram in Figure 6.2 is that of the value of the error of date

estimates based on method 𝑀2 for documents in the test set. The MAE and the

MedAE are 9 years and 6 years, respectively.

We also attempted to combine the dating methodologies 𝑀1, 𝑀2, 𝑀3 and 𝑀4 in

order to construct a single dating methodology, 𝑀𝑡𝑜𝑡𝑎𝑙, which would perform at least

as well as any of the previous dating methodologies. We constructed 𝑀𝑡𝑜𝑡𝑎𝑙 by using

a weighted sum of the dating estimators based on 𝑀1, 𝑀2, 𝑀3 and 𝑀4. The weights
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Figure 6.2: A histogram of the error in years of method 𝑀2 based on documents in the test set.

The bandwidth value is ℎ = 12 and degree of freedom value is 𝑑.𝑓. = 3. The 1st quartile is at 2

years, the median is at 6 years, the 3rd quartile is at 11 years and the maximum value of the absolute

error is at 79 years.

were obtained by minimizing the mean square error of the estimated document dates

over the validation set as follows: let 𝑡𝑖𝑗 be the date estimate of document 𝑗 ∈ 𝒱
based on dating methodology 𝑀𝑖 (𝑖 = 1, . . . , 4) and let

(�̂�1, �̂�2, �̂�3, �̂�4) = min
𝑎1,𝑎2,𝑎3,𝑎4

1

∣𝒱∣
∑
𝑗∈𝒱

(𝑎1𝑡1𝑗 + 𝑎2𝑡2𝑗 + 𝑎3𝑡3𝑗 + 𝑎4𝑡4𝑗 − 𝑡𝑗)2

where 𝑡𝑗 is the true date of document 𝑗, and
∑

𝑖 𝑎𝑖 = 1. Computation results give

(�̂�1, �̂�2, �̂�3, �̂�4) = (0.14471, 0.63599, 0.12019, 0.09844).

Using this estimation of (�̂�1, �̂�2, �̂�3, �̂�4) as the coefficients for combining date esti-

mates from the test set based on dating methods𝑀1, 𝑀2, 𝑀3 and𝑀4 (we denote this

method 𝑀𝑡𝑜𝑡𝑎𝑙), we find the
√
MSE to be 14.5 years, MAE to be 9.2 years, MedAE
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to be 6 years and 𝑝𝑐 = 0.95. (Similar calculations on the validation set based on

coefficients (�̂�1, �̂�2, �̂�3, �̂�4) results in
√
MSE to be 14.3 years, MAE to be 9.3 years,

MedAE to be 6 years and 𝑝𝑐 = 0.94). As we can see, optimizing on MSE, 𝑀𝑡𝑜𝑡𝑎𝑙 does

not perform much better than using method 𝑀2 alone, and the values of
√
MSE,

MAE, MedAE, and 𝑝𝑐 between the two methods are comparable.

Figures 6.3 – 6.7 provide plots of estimated document dates versus the actual

document dates based on dating methodologies 𝑀1, 𝑀2, 𝑀3, 𝑀4 and 𝑀𝑡𝑜𝑡𝑎𝑙, respec-

tively, for the 326 documents in the test set 𝒜. In all the dating methodologies, the

plots exhibit edge bias, and in particular the edge bias from 𝑀𝑡𝑜𝑡𝑎𝑙 is not any smaller

than that of 𝑀2. For this reason and from the discussions in the previous paragraph,

we conclude that basing our dating analysis on a single shingle order (shingle order

2 in this case) suffices.
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Table 6.1: Values of
√
𝑀𝑆𝐸, MAE, MedAE, and 𝜌𝑐 for dating methodologies M1,

M2, M3 and M4 evaluated on a validation set of order 419.

Dating Shingle Optimal Optimal
√
𝑀𝑆𝐸 MAE MedAE 𝜌𝑐

Method Order h d.f. (val. set) (val. set) (val. set)

M1 1 8 5 18.3 11.7 7.0 0.91

M2 2 12 3 14.8 9.5 6.0 0.94

M3 3 12 5 17.0 10.1 6.0 0.92

M4 4 16 12 18.8 11.5 7.0 0.90

Table 6.2: Values of
√
𝑀𝑆𝐸, MAE, MedAE, and 𝜌𝑐 for dating methodologies M1,

M2, M3 and M4 evaluated on a test set of order 326.

Dating Shingle Optimal Optimal
√
𝑀𝑆𝐸 MAE MedAE 𝜌𝑐

Method Order h d.f. (test set) (test set) (test set)

M1 1 8 5 19.8 12.5 8.0 0.91

M2 2 12 3 14.7 9.0 6.0 0.94

M3 3 12 5 15.4 9.5 6.0 0.94

M4 4 16 12 22.8 12.4 7.0 0.88
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Figure 6.3: Estimated versus actual document date for the 326 documents in the test set 𝒜 based

on shingle order 1. The solid line is “X = Y” axis.
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Figure 6.4: Estimated versus actual document date for the 326 documents in the test set 𝒜 based

on shingle order 2. The solid line is “X = Y” axis.
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Figure 6.5: Estimated versus actual document date for the 326 documents in the test set 𝒜 based

on shingle order 3. The solid line is “X = Y” axis.
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Figure 6.6: Estimated versus actual document date for the 326 documents in the test set 𝒜 based

on shingle order 4. The solid line is “X = Y” axis.
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Figure 6.7: Estimated versus actual document date for the 326 documents in the test set 𝒜 based

on the combination of shingle orders 1, 2, 3 and 4 (the 𝑀𝑡𝑜𝑡𝑎𝑙 method). The solid line is the “X =

Y” axis.

Figures 6.8a,b – 6.11a,b show the estimate of logit(𝜋𝑠(𝑡)) and the estimate of 𝜋𝑠(𝑡),

the probability of occurrence of various selected shingles across time. The data in part

(a) of the figures represents the logit of the proportion of time the shingles occurred

at different dates, and the data in part (b) of the figures is simply the proportions

of time the shingles occurred at different dates. All the estimates are based on the

local constant fit where the kernel weights are the density of the t-distribution. The

bandwidth and degree of freedom associated with the kernel weight used in each of

the plots are the optimal bandwidth and the optimal degree of freedom associated

with the shingle order of 𝑠. For example, the optimal bandwidth and the optimal

degree of freedom used for shingle order 1 are ℎ = 8 and 𝑑.𝑓. = 5, and for shingle

order 3, ℎ = 12 and 𝑑.𝑓. = 5. The estimates in part (b) of the figures are obtained
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by applying the respective inverse-logit transformation to figures in part (a). The

data points drawn along the solid horizontal line in part (a) of the plots indicate that

there is a zero occurrence of the shingle corresponding to dates on the x-axis, even

though there are documents at these dates. (The value of the y-axis corresponding to

the horizontal line is “artificial”, in the sense that it is arbitrary and chosen only to

graphically illustrate the point made in the previous sentence. The logit transform of

these same date points is plotted in figures part (b), below the value 0 corresponding

to the y-axis.)

Shingles were selected for plotting in Figures 6.8a,b – 6.11a,b based on the number

of times they occurred across different dates. If they occurred consistently at about

the same proportion across the different dates, they are regarded as being uninforma-

tive, that is, they don’t provide any indication as to the date they were more likely

to have been used. On the other hand, informative shingles are those that occur with

highly variable proportions across different dates.

The shingles “et” (“and”) and “omnibus” (“for all”) are examples of uninformative

shingles. As can be seen in Figure 6.8b and Figure 6.9b, the fitted curves, logit(�̂�𝑠(𝑡))

and �̂�𝑠(𝑡), are both close to a horizontal line across the document dates, displaying

minimal peaks or troughs. An exception can be seen around the year 1440 where

the estimator suddenly peaks for the shingle et, and dips for the shingle omnibus.

This phenomenon is probably due to the fact that the density of documents in the

fourteen hundreds is quite low, thereby increasing the variability of the estimators in

this region (see equation (4.45)). Since the variance of the estimators is a function

of the bandwidth, and since the optimal bandwidth used here (ℎ = 8) is obtained

by minimizing the dating error based on all shingles of order 1, a bandwidth value

bigger than ℎ = 8 (i.e. a smoother curve) may be better suited in this region. We

also note, particularly, in the plots of Figure 6.8a and Figure 6.8b, a positive bias on
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the left boundary.

The shingles “donatorum” (“of the donors”) and “ibidem Deo seruientibus” or

“Deo ibidem seruientibus” (“serving God there”), terms typically used in grants made

to religious institutions, are on the other hand examples of informative shingles.

For the shingle donatorum, we see in Figure 6.10a and Figure 6.10b that both the

fitted curves, logit(𝜋𝑠(𝑡)) and 𝜋𝑠(𝑡), respectively, have prominent peaks at 1215 with

another smaller nearby peak occurring at 1190. Furthermore, these curve estimates lie

below the data due to the fact there are many instances where there are documents

at different dates but the shingle never appears in any of these documents. This

phenomenon is commonly seen in the curve estimates of various shingles.

The nature of informativeness of the shingle “ibidem Deo seruientibus” or “Deo

ibidem seruientibus” is different from “donatorum” in the sense that there are no

discernable peaks that occur in the fitted curves, as can be seen in Figure 6.11a and

Figure 6.11b. The fitted curves for this shingle show that its probability of occurrence

is highest between the years 1115 to 1165 and drops thereafter.

Another informative shingle is “Francis et Anglicis” (or the version “Franc[igen]is

quam Angl[ic]is”) (“French and English”). This form of address was commonly used

by French and English barons to address their men. When Normandy was lost to

the French in 1204, the English renounced their tenure of lands in Normandy and

the above form of address was no longer used (Gervers, 2000. p. 16). As shown

in Figure 6.12a and Figure 6.12b, the estimated probability of occurrence of the

above shingle declines from the early 1200’s. For the purposes of illustration, we

have also included additional plots overlayed on these same figures. These are plots

of the functions logit(�̂�𝑠(𝑡)) and �̂�𝑠(𝑡) where each function, as a function of time, is

computed using a bandwidth smaller than the optimal ℎ = 12. The plots of the curve

estimates based on the smaller bandwidth, ℎ = 3, have higher variability and are
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much rougher than of those based on larger bandwidth, such as ℎ = 12. This is also

a theoretical fact shown by Theorem 2 and the related equation 4.45.
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Figure 6.8: (a) Fitted logit transform of the probability of occurrence of the shingle et as a function

of time. The curve estimates are based on degree of freedom 𝜈 = 5 and bandwidth value ℎ = 8. (b)

Fitted probability of occurrence of the shingle as a function of time. The curve estimates are based

on degree of freedom 𝜈 = 5 and bandwidth value ℎ = 8. The asterisk indicate the proportion of

time the shingle occurs (in the case of (b), the logit of this proportion) at a date for which training

documents are present.
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Figure 6.9: (a) Fitted logit transform of the probability of occurrence of the shingle omnibus

as a function of time. The curve estimates are based on degree of freedom 𝜈 = 5 and bandwidth

value ℎ = 8. (b) Fitted probability of occurrence of the shingle as a function of time. The curve

estimates are based on degree of freedom 𝜈 = 5 and bandwidth value ℎ = 8. The asterisk indicate

the proportion of time the shingle occurs (in the case of (b), the logit of this proportion) at a date

for which training documents are present. The asterisk along the horizontal line in (a) indicate that

the shingle was not observed even though training documents were present at the given document

date. These same points are plotted below the point 0 in (b).
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(b)

Figure 6.10: (a) Fitted logit transform of the probability of occurrence of the shingle donatorum

as a function of time. The curve estimates are based on degree of freedom 𝜈 = 5 and bandwidth

value ℎ = 8. (b) Fitted probability of occurrence of the shingle as a function of time. The curve

estimates are based on degree of freedom 𝜈 = 5 and bandwidth value ℎ = 8. The asterisk indicate

the proportion of time the shingle occurs (in the case of (b), the logit of this proportion) at a date

for which training documents are present. The asterisk along the horizontal line in (a) indicate that

the shingle was not observed even though training documents were present at the given document

date. These same points are plotted below the point 0 in (b).



Chapter 6. Calendaring by Maximum Prevalence 118

*

** *

**

*

**
**

*
*

**

*

*

* *

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*
*

*

**

*

**

*

*

*

**

*

**

*

*
*

*

**

*

****

*

**

*

*

1100 1200 1300 1400

−
11

−
10

−
9

−
8

−
7

−
6

−
5

Document date

lo
gi

t (
pr

ob
ab

ili
ty

 o
f o

cc
ur

re
nc

e)

*** * *** **** *************************** ******** ******************************** ********* ******************************************* ************************************** ** **** * * * * *

(a)

*

*

*
*

*
*

*

**
*
*

*

*

*
*

*

*

* *

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

**

*

**

*
**

*

*

*

**

*
**
***

*

**

*

****
*

**

*

*

1100 1200 1300 1400

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0.
00

30

Document date

P
ro

ba
bi

lit
y 

of
 o

cc
ur

re
nc

e

*** * *** **** ******************* ******** ******** ******************************** **** ***** *********** ***************** *************** ************************************** ** *** * * * * * *

(b)

Figure 6.11: (a) Fitted logit transform of the probability of occurrence of the shingle ibidem Deo

seruientibus/ Deo ibidem seruientibus as a function of time. The curve estimates are based on degree

of freedom 𝜈 = 5 and bandwidth value ℎ = 12. (b) Fitted probability of occurrence of the shingle as

a function of time. Curve estimates based on degree of freedom 𝜈 = 5 and bandwidth values ℎ = 12.

The asterisk indicate proportion of time the shingle occurs (in the case of (b), the logit of this

proportion) at a date for which training documents are present. The asterisk along the horizontal

line in (a) indicate that the shingle was not observed even though training documents were present

at the given document date. These same points are plotted below the point 0 in (b).



Chapter 6. Calendaring by Maximum Prevalence 119

*

*

*

*

*

*

*
*

***

*

*

*

* *
*

*

*

*

*

1100 1200 1300 1400

−
11

−
10

−
9

−
8

−
7

−
6

−
5

−
4

Document date

lo
gi

t (
pr

ob
ab

ili
ty

 o
f o

cc
ur

re
nc

e)

*** ** *** ************* ********************************************************************************************************************************************************** ************************************** ** **** * * * * *

(a)

*

*

*

*
*
*

*

*

***

*

*

*

* ** *

*

*

*

1100 1200 1300 1400

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Document date

P
ro

ba
bi

lit
y 

of
 o

cc
ur

re
nc

e

*** ** *** ************* *** ******************************************************************************************************************************************************* ************************************** ** *** * * * * * **** ** *** ************* *** ******************************************************************************************************************************************************* ************************************** ** *** * * * * * *

(b)

Figure 6.12: (a) Fitted logit transform of the probability of occurrence of the shingle Francis et Anglicis/

Franc[igen]is quam Angl[ic]is as a function of time. The curve estimates are based on degree of freedom 𝜈 = 5 and

bandwidth values ℎ = 12 (dashed line), and degree of freedom 𝜈 = 5 and bandwidth values ℎ = 3 (solid line). (b)

Fitted probability of occurrence of the shingle as a function of time. Curve estimates are based on degree of freedom

𝜈 = 5 and bandwidth values ℎ = 12 (dashed line), and degree of freedom 𝜈 = 5 and bandwidth values ℎ = 3 (solid

line). The asterisk indicate the proportion of time the shingle occurs (in the case of (b), the logit of this proportion) at

a date for which training documents are present. The asterisk along the horizontal line in (a) indicate that the shingle

was not observed even though training documents were present at the given document date. These same points are

plotted below the point 0 in (b).
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The plots in Figures 6.13a and 6.13b, are each the estimated probability of the

occurrence of a document as a function of time, as given by the formula

�̂�𝒟(𝑡) =
∏

𝑠∈𝑠𝑘(𝒟)
�̂�𝑠(𝑡).

The documents used in Figure 6.13a and Figure 6.13b are both in the test set, and the

function �̂�𝒟(𝑡), for each document 𝒟, is based on shingle order 2. For each document,

�̂�𝒟(𝑡) was computed based on four different bandwidth values; ℎ = 3, 12, 20, and 35.

The degree of freedom of the kernel function in all cases was set at 3. What we try to

illustrate in these plots is the effect of changing bandwidth on �̂�𝒟(𝑡), and ultimately,

on the date estimate 𝑡𝒟 = argmax𝑡 �̂�𝒟(𝑡). As shown in each of the plots, as the value

of ℎ increases the smoother the curve estimate of �̂�𝒟(𝑡) becomes. As ℎ decreases on

the other hand, we can see the roughness (higher variance) of the curve estimator.

The challenge is, of course, in deciding what level of roughness is optimal for each

document. We notice, however, that no matter what the value of ℎ is, the value of 𝑡𝒟

does not change much, and therefore, the method we have for determining the date

estimate is relatively robust against changes in the bandwidth. The actual and the

estimated dates of the document used in Figure 6.13a are 1299 and 1307, respectively,

and the actual and the estimated dates of the document used in Figure 6.13b are 1222

and 1215, respectively.

Another observation we would like to make with regards to the Figure 6.13a

and Figure 6.13b is that the peak of the plot in Figure 6.13a is more prominent or

“pointier” than that of the plot in Figure 6.13b. Quantifying the peakedness of such

plots may be a step to constructing a confidence interval for a date estimate.

The descriptions of the computer codes used in this section can be found in the

appendix.
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Figure 6.13: The plots (a) and (b) are that of the function �̂�𝒟(𝑡) for two separate documents

in the test set. The function �̂�𝒟(𝑡) is plotted for varying values of the bandwidth ℎ. In both

plots, the documents were based on shingle order 2. The actual date for the document used

in (a) is 1299 and the estimated date is 1307 (vertical line), for document used in (b), the

actual date is 1222 and the estimated date is 1215 (vertical line). In all cases the degree of

freedom 𝜈 = 3.



Chapter 7

Conclusions and Future Research

Directions

7.1 Combining date estimates

As discussed in Chapter 5, Section 5.3, using the mean square error as the criterion for

selecting the optimal value for the parameter (there, the parameter, 𝑚, is the closest

number of documents in the training set to the document which we are trying to

date), we found that the distance based method based on shingle order 1 and𝑚 = 500

performed the best (
√
MSE = 20.07). However, the measurement,

√
MSE, MAE and

MedAE based on the combined shingle orders 1 and 2 for 𝑚 = 100, were still very

close to those of shingle order 1 and 𝑚 = 500. (See Tables 5.1 and 5.4.) In Chapter

6, Section 6.5, again using mean square error as the criterion for selecting the optimal

parameters (in that case, the parameters of interest were the optimal bandwidth ℎ,

and the degree of freedom 𝜈 of the kernel) we found that for the maximum prevalence

method that based on shingle order 2 with ℎ = 12 and 𝜈 = 3 gave the best result

(
√
MSE = 14.7 on the test set). Considering the superior performance of shingle order

122
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2 to all the other shingle orders in the maximum prevalence method, we decided to

pick the date estimation method based on the combinations of shingle orders 1 and

2 (as oppose to shingle order 1 alone) as the best dating methodology among the

distance based methods. On the test set, the combination of shingle orders 1 and 2

for 𝑚 = 100 out performs all the other methods based on shingle combinations of

orders 1 and 2 with values of 𝑚 different from 100. On the 326 documents of the

test set, the results for the combination of shingle orders 1 and 2 for 𝑚 = 100 are,
√
MSE = 20.45, MAE = 12.32 and MedAE = 6.35.

Figure 7.1a is a plot of the best date estimate based on distance based method

versus the best date estimate by the method of maximum prevalence on 326 doc-

uments from the test set. As we can see from the plot, the date estimates based

on maximum prevalence method have a lower margin of error (i.e. they are closer

to the 𝑋 = 𝑌 axis) particularly for the earlier dates (1100 to 1175) and the later

dates (1325 to 1400). The plot in Figure 7.1b is the difference in date estimates (date

estimates based on distance-based method minus date estimates based on maximum

prevalence method) versus the actual document dates. The date estimates based on

the distance-based measures are larger than those of the date estimates based on the

maximum prevalence method for the years ranging from 1100 to about 1225. On the

other hand, for the years ranging from about 1275 to 1400, the date estimates based

on the maximum prevalence method are slightly larger than the date estimates based

on the distance-based method.

At this point we wish to address the question of whether there is a statistically

significant difference between the best date estimates based on the distance-based

and the maximum prevalence methods, and if there is, how to best combine these

two methods for date estimation. To test the null hypothesis that the two dating

methodologies are not significantly different, we employed a permutation test based
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on the normalized differences in mean squared error. This test proceeds as follows.

We begin with two column vectors of length 326, containing the two sets of 326

date estimates for the documents in the test set (one set of date estimates based on the

document distance-based method, and the other based on the maximum prevalence

method). Also, the two vectors are matched pairs - that is, for a given row, say row 𝑖,

the first and the second elements of row 𝑖 are the date estimates of the 𝑖th document

based on the distance-based and the maximum prevalence methods, respectively. A

series of 1000 permutations of these two vectors is performed, where each permu-

tation consists of randomly switching or not switching (with probability 1/2) the

corresponding elements of the two vectors. For each such permutation, we compute

the difference between the mean squared errors of the estimators corresponding to

the scrambled column vectors. This produces an empirical distribution of differences

of mean squared errors. Under the null hypothesis, the difference of the sample mean

squared errors of the two estimators is not likely to be in the tail this distribution.

Figure 7.2 is a histogram of the difference between the mean squared dating error

based on 1000 permutations. We found the difference in the mean squared error be-

tween the two original dating methodologies to be 2.6, which is off scale and indicates

a highly significant difference between the two dating methods.
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Figure 7.1: (a) A plot of actual document date versus date estimates of documents from the test

set. Date estimates based on document distance measure are indicated by “o” and date estimates

based on the maximum prevalence method are indicated by “*”. (b) A plot of the difference in date

estimates (distance-based method minus maximum prevalence method) versus actual document date.
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Figure 7.2: A histogram of the difference between the mean squared dating error based on 1000

permutations. The permutation was run on 326 documents from the test set. The difference in the

mean squared error between the distance-based date estimates and the maximum prevalence method

date estimates is 2.6.

On the question of how to combine the date estimates from the two dating method-

ologies, we could take the average of the date estimates, in which case we give equal

weight to each of the dating methodologies in the new date estimates, or we could,

for example, find the optimal coefficients for the linear combination between the two

dating methodologies based on documents from the validation set. Doing this, we find

the optimal coefficient for the maximum prevalence method and the distance-based

method are 0.83 and 0.17, respectively. The resulting
√
𝑀𝑆𝐸 on the test set is 13.46

years.
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7.2 Comparison of the distance based method and

maximum prevalence method

In this section we discuss some of the advantages and limitations of the document

distance based method of Chapter 5, and the maximum prevalence method of Chapter

6 for document dating.

The document distance based method of Chapter 5 can accommodate ordered and

unordered categorical variates whereas the maximum prevalence method of Chapter

6 is not designed for such purpose.

The document distance based method is simple - it is essentially weighted sums

of dates from the training data where the weights are based on the distance between

the training data and the document whose date we are trying to estimate. One

downside of this method, however, is that unlike maximum prevalence, it does not

automatically scale down the contribution of uninformative or insignificant shingles.

As discussed in Chapter 6, Section 6.5, the uninformative shingles, for example, et

and omnibus, have fitted curve �̂�𝑠(𝑡) that is close to a horizontal line. Therefore, for a

document 𝒟 containing the shingles 𝑠 = “et” and/or 𝑠 = “omnibus”, the contribution

of �̂�𝑠(𝑡) to the evaluation of argmax𝑡 �̂�𝒟(𝑡) is minimal.

The document distance based method has few model assumptions whereas the

maximum prevalence method assumes words (shingles) are independently and bino-

mially distributed. As a result, the latter method allows us to model the probability

of occurrence of individual shingles as a function of time. This feature of the maxi-

mum prevalence method is particulary useful for historians (see Gervers and Hamonic,

2010). Furthermore, the maximum prevalence method, at least in principle, can elim-

inate edge bias in the date estimates, whereas the distance-based method can not.

The document distance based method of Chapter 5 allows for the implementation
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of an optimal bandwidth for each document whose date we are aiming to estimate.

The maximum prevalence method of Chapter 6, however, uses the same bandwidth

for all the estimates of the probability of occurrences of shingles. Perhaps customizing

the bandwidths for each of these estimates would be one way to try to improve the

document date estimates based on the maximum prevalence method.

7.3 Identifying informative words

In this section, we investigate the characteristics of words or shingles that are most

useful for document dating. There are a total of 42,978 distinct words in the training

documents, and among this large number of words one can reasonably expect there

to be characteristics that render certain words more informative or significant than

others. The aim of this exercise is to examine the possibility of extracting, in an

automated fashion, informative words or shingles for the purposes of (in the context

of this thesis) document dating. Some of the obvious characteristics that will be

examined for a given word are:

(a) The standard deviation of dates when the shingle occurs. Intuitively we expect

a high standard deviation would mean a lack of concentration of a shingle at any

particular time frame, thus rendering it less informative.

(b) The number of documents in which the shingle occurs. This characteristic mea-

sures how rare a shingle is versus how informative it is when it occurs.

To assess the influence of the above characteristics of words for predicting dates,

the following experiment was conducted. Randomly pick 𝑁 documents. From these

𝑁 documents, pick 𝐾 words which exhibit a range of standard deviations. Let

𝑥𝑖𝑗 =

⎧⎨⎩
1 if word 𝑖 is in document 𝑗

0 otherwise
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where 𝑖 ranges from 1 to 𝐾, and 𝑗 ranges from 1 to 𝑁 . Let x𝑖 denote the vector of

length 𝑁 whose entries are 𝑥𝑖𝑗 where 𝑖 is fixed. Also, let 𝑑𝑗, 𝑗 = 1, . . . , 𝑁 be the

true dates of the randomly picked documents. We then ran a tree regression where

we take the response variables to be the dates of the document (the 𝑑𝑗’s) and the

predictors to be the x𝑖’s. Finally, let

𝑦𝑖 =

⎧⎨⎩
1 if word 𝑖 is used in the fit

0 otherwise .

In this experiment 𝑁 was taken to be 300 and 𝐾 was taken to be 300.

Results: The above experiment was carried out on shingles of orders 1 and 2

separately. Of the 300 shingles of order 1, the tree regression picked 8 of them

as being informative, and the remaining 292 were rendered as uninformative. For

shingles of order 2, the tree regression picked 3 of the shingles as being informative

and the remaining 297 as uninformative shingles. The plots in Figures 7.3a- 7.4b below

display the characteristics (a) and (b) of the informative and uninformative shingles

of orders 1 and 2. In Figure 7.3b, we see that the informative shingles of order 2 are

those that have a higher standard deviation for the dates in which they occurred. This

however is not is the case for shingles of order 1, as seen in Figure 7.3a. In the latter

case, the standard deviation, as a discriminant measure, is not adequate, especially,

for shingles that have arbitrary distribution (in time). Regarding characteristics (b),

for both shingles of order 1 and 2, the informative shingles are those that occur with

reasonably high frequency - those shingles that occur rarely or too frequently are

not picked as being informative. Using the number of documents in which a shingle

occurs as a measure of discrimination is supported especially for shingles of order 2.

In Figure 7.5, we have plotted the probability of occurrence as a function of time of

the three order 2 informative shingles - “matris ecclesie”, “predictum est” and “quod

nos”. For purposes of comparison, in Figure 7.6, we have also selected and plotted the
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probability of occurrence as a function of time of three other order 2 uninformative

shingles - “testimonium huic”, “beate Marie” and “in eadem”. Characteristics (a) and

(b) of these uninformative shingles is comparable to the three informative shingles.

The data points that lie below the value 0 of the y-axis indicate that the shingles of

interest do not occur in the corresponding date of the x-axis even though there are

documents in those dates.

It is comforting that the findings of the tree regression, specifically the conclusion

that the informative shingles are those that occur with reasonably high frequency (not

too frequently or not too rarely), matches with the findings of Luhn (Luhn, 1958).

While working at IBM, Luhn was trying to develop methods for creating abstracts

for technical papers and magazine articles by automatic means. In this attempt,

Luhn relied on Zipf’s law (Zipf, 1949) which states that the product of the frequency

of words, f, in a text, and the rank of their order, r, is approximately a constant,

where this constant is text dependent. Luhn plotted log(𝑟) versus log(𝑓), and by

trial and error determined an upper cut-off and a lower cut-off points on the log(𝑟)

axis. Words that exceeded the upper cut-off were considered to be too rare and those

that fell below the lower cut-off were considered to be too common in discriminating

content. He supposed that the ability of words to discriminate content reached its

peak at the rank order exactly half way between the two cut-off points. Grossman

and Frieder (1998, p.11) state that Luhn’s idea is the basis of many of the techniques

in information retrieval. In fact, the idf term weight (defined in Chapter 3, Section

3.3.1 as log(𝑁/𝑛𝑖), where 𝑁 is the total number of documents in the collection and

𝑛𝑖 is the number of documents that contain the term 𝑖,) is one such method for

discriminating non-significant words.
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Figure 7.3: A plot of the standard deviation of dates in which a word is used versus 𝑦, where 𝑦 = 0

indicates uninformative words and 𝑦 = 1 informative words. Words of shingle order 1 are shown in

part (a), and words of shingle order 2 are shown in part (b).
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Figure 7.4: A plot of the number of documents in which a word is used versus 𝑦, where 𝑦 = 0

indicates uninformative words and 𝑦 = 1 informative words. Words of shingle order 1 are shown in

part (a), and words of shingle order 2 are shown in part (b). The numeric labels in the plots indicate

the total number of words found at ‘(x,y)’ point.
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(c)

Figure 7.5: Fitted probability of occurrence of the informative shingles matris ecclesie, predictum

est and quod nos shown in plots (a), (b) and (c), respectively. Curve estimates are based on degree

of freedom 𝜈 = 3 and bandwidth value ℎ = 12. The asterisk indicate the proportion of time the

shingles occur at a date for which training documents are present. The asterisk below the 0 point

indicate the shingles were not observed even though training documents were present at the given

document date.
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(c)

Figure 7.6: Fitted probability of occurrence of the uninformative shingles testimonium huic, beate

Marie and in eadem shown in plots (a), (b) and (c), respectively. Curve estimates are based on

degree of freedom 𝜈 = 3 and bandwidth value ℎ = 12. The asterisk indicate the proportion of time

the shingles occur at a date for which training documents are present. The asterisk below the 0

point indicate the shingles were not observed even though training documents were present at the

given document date.
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7.4 Future research direction

The document dating estimators we have developed in Chapter 5 (distance based

method) and Chapter 6 (maximum prevalence method) are obviously functions of

the training data. It would be useful from the computational and data storage as-

pects to examine what relationship there is between the estimation error and size

of the training data. As shown in the plots of Figures 6.9b, 6.10b, 6.11b, 6.12b,

and Figures 7.6a -7.6c, many words have zero occurrence at most of the document

dates. An increase in training size may therefore be helpful in better estimating the

probability of occurrence of these words as a function of time.

Even if the amount of training data was to increase to infinity, following the

discussions in Chapter 6, Section 6.4, 𝑡𝒟 → 𝑡∗𝒟, but 𝑡
∗
𝒟 is not necessarily equal to 𝑡𝒟,

the actual document date. What accounts for the difference between 𝑡∗𝒟 and 𝑡𝒟, in

part, we presume, is the limitation of our dating methodology. For example, we are

not taking into account in the dating methodology the construction of the natural-

language of Latin, nor do we weigh differently the informative and the uninformative

words. Furthermore, there is inherent randomness, for example, variability of an

individual’s writing styles. Moreover, since a document by nature has a finite length,

we are observing only a finite sample of words from what potentially would have been

an infinite stream of words, even if the training date is infinite. All of this contributes

to the gap between 𝑡𝒟 and 𝑡∗𝒟, and 𝑡
∗
𝒟 and 𝑡𝒟.

Further, we could study the performance of date estimates based on the maximum

prevalence of shingle occurrences (Chapter 6) if the associated probabilities were to be

based on local polynomial kernel regression for the generalized linear models, where

the order of the polynomial is odd and the generalized linear model is other than

the logistic. As discussed in Chapter 4, polynomials of odd degrees have attractive
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properties, such as simpler forms of bias as well as absence of edge bias. However, we

note that no matter how good our model is in all aspects, our ability to analyze the

DEEDS documents in this thesis is limited since the approach we have taken does not

go further than analyzing the matching of words or shingles. We do not, for instance,

as computational linguists would, delve into the grammatical structures of Latin (the

language in which the DEEDS documents are written) nor do we take into account

content meanings. For example, the content meaning of the phrase The Big Apple

in certain cases is synonymous with New York. However, in the approach we have

taken, the synonymity of these two phrases would not be represented in the models.

The results of our experiment from using the tree regression to classify the charac-

teristics of informative shingles seems promising. However, we still need to incorporate

the results from the tree regression in the dating methodologies discussed in Chapter

5 and Chapter 6.

Moreover, as stated in the introduction, the DEEDS documents are also accom-

panied with information regarding the properties of the documents, for example, the

religious house which a witness belongs to, the location of the property and whether

the property of a transfer or an agreement. At the moment, the dating procedures of

the distance-based and the maximum prevalence methods do not make use of these

informations. Finding ways to incorporate them could potentially improve the date

estimates of the DEEDS documents.

Since it is useful to have knowledge of the uncertainty of any statistical estimate,

it would be worth while to build a confidence interval for the date estimates of the

DEEDS documents. It would be useful to investigate the accuracy of the date esti-

mate of a document we wish to date as it relates to the “peakedness” of the curve of

the probability of occurrence of the document as a function of time. This idea was

briefly mentioned in the closing of Chapter 6, Section 6.5. in relation to the plots in
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Figure 6.13a and Figure 6.13b. We expect that the sharper the peaks, the more ac-

curate the date estimate, but the limitations of this intuition need to be investigated.

Being able to quantify the peakedness of the curves of the probability of occurrence

of documents may allow us to build confidence intervals.

It would also be interesting to examine the type of words and probability models

for word frequency other than the binomial-such as the Poisson or the negative bino-

mial as studied by Mosteller and Wallace in determining the authors of the disputed

essays of the Federalist Papers (Mosteller and Wallace (1963)). In this regard, we can

also draw lessons from the work of Margulis (1992) in which he investigates the va-

lidity of the multiple (nP) model of word distribution in document collection. ((nP)

distribution is defined to mean a mixture of n Poisson distributions with different

means). Margulis provides a test to determine whether a certain word follows an nP

distribution and shows that 70% of the frequently occurring words indeed follow the

nP distribution. In light of the results of Mosteller and Wallace, and Margulis, it

would be useful to find ways to extract informative words on which to base the docu-

ment dating algorithms. The potential benefit could be an increase in computational

speed as well as accuracy in document date estimates.

In other fields of inquiry, such as in comparative linguistics, where one is interested

in reconstructing a proto-language (the common ancestor of languages that form a

language family), the various distance measures and their properties as discussed

in Chapter 3 may be of use (see Kondrak, 2002). In the field of bioinformatics,

the concept of shingles and distance measures can also be useful in the study of

sequence alignment (Felsenstein, 2004; Altschul, 2003; Karlin and Altschul, 1990;

Lipman et al., 1989). The study of sequence alignment investigates the ways in which

the sequences of DNA, RNA or proteins are aligned to another homologous sequence

for the purposes of comparison in order to identify regions of similarity. This in turn
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provides clues to researches to the evolutionary history and function of genes.



Appendix A

Kernel Density Estimation

The considerations which arise in kernel density estimation are central to the develop-

ment of the methods of nonparametric regression and generalized linear models and

local smoothing discussed in Chapter 4. In this appendix, we provide an overview

of kernel density estimation, starting with the histogram estimator. The asymptotic

properties of such estimators, as well as methods for bandwidth selection will be

described in some detail.

A.1 The histogram

The histogram is one of the simplest non-parametric density estimators. Suppose

we have a sample 𝑋1, . . . , 𝑋𝑛 of independent and identically distributed observations

from an unknown density function 𝑓 . The motivation for the construction of the

histogram estimator of 𝑓 is based on the definition of the density function:

𝑓(𝑥) = lim
ℎ→0

𝐹 (𝑥+ ℎ)− 𝐹 (𝑥)
ℎ

, (A.1)

139



Appendix A. Kernel Density Estimation 140

where 𝐹 (𝑥) is the cumulative distribution function (c.d.f) of the random variable 𝑋.

The natural estimator 𝐹 of the c.d.f 𝐹 is

𝐹 (𝑥) =
#{𝑋𝑖 ≤ 𝑥}

𝑛
.

Then, given an origin 𝑥0 and a bin length of ℎ, define the bin 𝐵𝑚 to be

𝐵𝑚 = ( 𝑥0 + (𝑚− 1)ℎ, 𝑥0 +𝑚ℎ ] ,

where ℎ > 0 and 𝑚 ∈ 𝒵 where 𝒵 are the integers. From equation (𝐴.1) and the

estimate 𝐹 (𝑥), we are led to estimate 𝑓(𝑥) as

𝑓(𝑥) = (𝑛ℎ)−1#{𝑥 < 𝑋𝑖 ≤ 𝑥+ ℎ}

≈ (𝑛ℎ)−1#{𝑥0 + (𝑚− 1)ℎ < 𝑋𝑖 ≤ 𝑥0 +𝑚ℎ}

for 𝑥 ∈ 𝐵𝑚, i.e. , for 𝑥 ∈ [ 𝑥0+(𝑚−1)ℎ, 𝑥0+𝑚ℎ ). The histogram density estimate,

𝑓ℎ𝑖𝑠𝑡, is then defined as

𝑓ℎ𝑖𝑠𝑡(𝑥) = (𝑛ℎ)−1
𝑛∑

𝑖=1

∑
𝑚

𝐼(𝑋𝑖 ∈ 𝐵𝑚)𝐼(𝑥 ∈ 𝐵𝑚) .

Of course the histogram depends on the bandwidth ℎ and the origin 𝑥0 and its shape

can be influenced significantly as 𝑥0 varies.

A.2 The kernel density estimator

Originally suggested by Rosenblatt (1956), the kernel density estimate overcomes

some of the problems of the histogram. The kernel estimator is based on a weight

function 𝐾 called the kernel function, satisfying the condition

∫ ∞

−∞
𝐾(𝑥)𝑑𝑥 = 1 .
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Although it is not a formal requirement, 𝐾 is generally also taken to be symmetric

about the origin and non-negative. Furthermore, introducing the notation

𝜇2(𝐾) ≡
∫ ∞

−∞
𝑥2𝐾(𝑥)𝑑𝑥 ,

we typically also require that 0 < 𝜇2(𝐾) < ∞. An example of a kernel function

satisfying the above condition is the density of a normal distribution having mean

zero and variance 𝜇2(𝐾).

The kernel density estimator is then defined to be

𝑓ℎ(𝑥) =
1

𝑛ℎ

𝑛∑
𝑖=1

𝐾
(
𝑥−𝑋𝑖

ℎ

)

where ℎ is called the bandwidth or the smoothing parameter. A more compact formula

for the kernel estimator is obtained by introducing the rescaled notation 𝐾(𝑢) =

ℎ−1𝐾(𝑢/ℎ). This would allow us to rewrite

𝑓ℎ(𝑥) =
1

𝑛

𝑛∑
𝑖=1

𝐾ℎ(𝑥−𝑋𝑖) .

The motivation behind the kernel density estimator can be seen if we revisit a defi-

nition of 𝑓(𝑥) equivalent to (𝐴.1):

𝑓(𝑥) = 𝐹 ′(𝑥) = lim
ℎ→0

𝐹 (𝑥+ ℎ)− 𝐹 (𝑥− ℎ)
2ℎ

.

Then, unlike the histogram estimate which divides up the line into bins, we estimate

the derivative separately for each point 𝑥:

𝑓ℎ(𝑥) =
number of 𝑋𝑖’s that fall in (𝑥− ℎ, 𝑥+ ℎ]

2𝑛ℎ
.

We can rewrite this as

𝑓ℎ(𝑥) =
1

𝑛ℎ

𝑛∑
𝑖=1

𝐾
(
𝑥−𝑋𝑖

ℎ

)
,
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where

𝐾(𝑢) =

⎧⎨⎩
1/2 if − 1 < 𝑢 ≤ 1

0 otherwise .

The form of the resulting kernel density estimator is based on the uniform density

function on (-1,1].

The density estimate inherits some of the mathematical properties of 𝐾. For

example, if 𝐾 is non-negative and a density, 𝑓 will be too. If all derivatives of

𝐾 exist (as for example when 𝐾 is a normal density function), then all orders of

derivatives of 𝑓 will also exist.

A.3 Properties of the kernel density estimator

There are several ways to measure the “closeness” between the density estimate 𝑓ℎ

and the underlying true density 𝑓 . Some of the more commonly used measures are:

the pointwise mean squared error (MSE) defined as

𝑀𝑆𝐸(𝑓ℎ(𝑥)) = 𝐸{𝑓ℎ(𝑥)− 𝑓(𝑥)}2 ,

the integrated square error (ISE) defined as

ISE(𝑓ℎ) =
∫
{𝑓ℎ(𝑥)− 𝑓(𝑥)}2𝑑𝑥 ,

and the mean integrated squared error (MISE) defined as

𝑀𝐼𝑆𝐸(𝑓ℎ) = 𝐸
∫ ∞

−∞
{𝑓ℎ(𝑥)− 𝑓(𝑥)}2𝑑𝑥 .

Here we will examine only the 𝑀𝑆𝐸(𝑓ℎ(𝑥)); we will discuss 𝐼𝑆𝐸(𝑓ℎ) and 𝑀𝐼𝑆𝐸(𝑓ℎ)

under the subsection “Bandwidth Selection” where these quantities will be used for

determining optimal bandwidth values.
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Using basic manipulations, the 𝑀𝑆𝐸(𝑓ℎ(𝑥)) can be rewritten as

𝑀𝑆𝐸(𝑓ℎ(𝑥)) = Var(𝑓ℎ(𝑥)) + {𝐸𝑓ℎ(𝑥)− 𝑓(𝑥)}2

= Var(𝑓ℎ(𝑥)) + Bias2(𝑓ℎ(𝑥)).

The bias of 𝑓𝑛(𝑥) can be computed as follows:

𝐸(𝑓ℎ(𝑥)) =
1

𝑛

𝑛∑
𝑖=1

𝐸(𝐾ℎ(𝑥−𝑋𝑖)) =
∫
𝐾ℎ(𝑥− 𝑢)𝑓(𝑢)𝑑𝑢 =

∫
𝐾(𝑠)𝑓(𝑥+ 𝑠ℎ)𝑑𝑠.

If we let ℎ→ 0, then

𝐸(𝑓ℎ(𝑥)) −→
∫
𝐾(𝑠)𝑓(𝑥)𝑑𝑠 = 𝑓(𝑥),

so that 𝑓ℎ(𝑥) will become unbiased as ℎ → 0. The bias of 𝑓ℎ(𝑥) can be further

analyzed via Taylor expansion. Assuming 𝑓 ∈ 𝐶2, i.e. that 𝑓 is twice continuously

differentiable, and that the kernel 𝐾 is symmetric about zero, then, as ℎ → 0, we

have

Bias(𝑓ℎ(𝑥)) =
∫
𝐾(𝑠)𝑓(𝑥+ 𝑠ℎ)𝑑𝑠− 𝑓(𝑥)

=
∫
𝐾(𝑠)

{
𝑓(𝑥) + 𝑓 ′(𝑥)𝑠ℎ+

ℎ2𝑠2

2
𝑓 ′′(𝑥) + 𝑜(ℎ2)

}
𝑑𝑠− 𝑓(𝑥)

= 𝑓(𝑥) +
ℎ2

2
𝜇2(𝐾)𝑓 ′′(𝑥) + 𝑜(ℎ2)− 𝑓(𝑥)

=
ℎ2

2
𝜇2(𝐾)𝑓 ′′(𝑥) + 𝑜(ℎ2) .

Similarly, as 𝑛ℎ→ ∞, the variance of 𝑓(𝑥) can be evaluated as follows:

Var(𝑓ℎ(𝑥)) = Var

(
1

𝑛

𝑛∑
𝑖=1

𝐾ℎ(𝑥−𝑋𝑖)

)
=

1

𝑛
Var(𝐾ℎ(𝑥−𝑋1))

=
1

𝑛

{
𝐸(𝐾2

ℎ(𝑥−𝑋1)−𝐸2(𝐾ℎ(𝑥−𝑋1))
}

=
1

𝑛

{
1

ℎ

∫
𝐾2(𝑠)𝑓(𝑥+ 𝑠ℎ)𝑑𝑠− (𝑓(𝑥) + 𝑜(ℎ))2

}
=

1

𝑛

{
1

ℎ
∣∣𝐾∣∣22(𝑓(𝑥) + 𝑜(ℎ))− (𝑓(𝑥) + 𝑜(ℎ))2

}
= (𝑛ℎ)−1∣∣𝐾∣∣22(𝑓(𝑥) + 𝑜(ℎ))− 𝑛−1(𝑓(𝑥) + 𝑜(ℎ))2

= (𝑛ℎ)−1∣∣𝐾∣∣22𝑓(𝑥) + 𝑜((𝑛ℎ)−1).
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Here ∣∣𝐾∣∣2 = (
∫
𝐾2(𝑥)𝑑𝑥)1/2. The asymptotics of MSE(𝑓ℎ(𝑥)), as ℎ → 0 and 𝑛ℎ →

∞, is therefore determined by

𝑀𝑆𝐸(𝑓ℎ(𝑥)) =
1

𝑛ℎ
∣∣𝐾∣∣22𝑓(𝑥) +

ℎ4

4
(𝜇2(𝐾)𝑓 ′′(𝑥))2 + 𝑜((𝑛ℎ)−1) + 𝑜(ℎ4) . (A.2)

Some key points which follow from the approximation (A.2), are:

(a) The asymptotically optimal bandwidth for 𝑀𝑆𝐸(𝑓ℎ(𝑥)), i.e., the value of ℎ

that minimizes 𝑀𝑆𝐸(𝑓ℎ(𝑥)), has the form

ℎ𝑚𝑠𝑒(𝑥) = argmin
ℎ
𝑀𝑆𝐸(𝑓ℎ(𝑥)) =

(
𝑓(𝑥)∣∣𝐾∣∣22

(𝑓 ′′(𝑥))2(𝜇2(𝐾))2𝑛

)1/5

. (A.3)

(b) If we increase the bandwidth parameter ℎ, resulting in smoother density esti-

mate, the variance term decreases but the bias term increases. Conversely, decreasing

the bandwidth parameter ℎ results in a less smooth density estimate having smaller

bias but increased variance.

(c) If ℎ → 0 and 𝑛ℎ → ∞, then 𝑀𝑆𝐸(𝑓ℎ(𝑥)) → 0. Thus, it follows by an

application of the Chebychev inequality, that 𝑓(𝑥) will then be a consistent estimator

of 𝑓(𝑥).

(d) The optimal bandwidth, ℎ𝑚𝑠𝑒(𝑥), depends on the unknown functions 𝑓 and

𝑓 ′′ and on the particular value of 𝑥.

The dependencies mentioned in point (d) are generally viewed as problematic

since in the ordinary kernel estimator a single bandwidth value usually controls the

smoothing at all parts of the density. As pointed out by Simonoff (1996, p.51), this is

a significant problem with the ordinary kernel estimator. No single bandwidth value

can possibly be “optimal” since the mean squared error of 𝑓ℎ(𝑥) at any point 𝑥 varies

with both 𝑓(𝑥)/ℎ and ℎ4[𝑓 ′′(𝑥)]2 (see equation (𝐴.2)). Thus, in order to reduce MSE,

ℎ would need to increase in regions where 𝑓 is large (to reduce variance) and it would

need to decrease in regions where 𝑓 ′′ is large (to reduce bias). From a practical point
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of view, when using a single bandwidth as a smoothing parameter, regions with high

curvature (𝑓 ′′ large) tend to be oversmoothed, and regions where 𝑓 ′′ is small (such as

in the tails), tend to be undersmoothed.

A.4 Bandwidth selection

For a given data set, a practical way to choose a bandwidth might be to begin with a

large bandwidth (oversmooth) and then gradually decrease the bandwidth until the

“structural” fluctuation of the data is reduced and “random” fluctuations start to

appear (Wand and Jones, (1995), p. 58). This strategy, of course, requires knowledge

about the structure of the data, for example, the locations of modes. Moreover, such

a trial-and-error approach can be time consuming when there are many densities to

estimate. Therefore, a solution based on some automatic procedure of bandwidth

selection method is required.

Revisiting the form of ℎ𝑚𝑠𝑒(𝑥) at (A.3), the lack of knowledge of the functions

𝑓(⋅) and 𝑓 ′′(⋅) is a key problem in specifying an optimal bandwidth. If we consider

the 𝐼𝑆𝐸(𝑓ℎ) measure of discrepancy between 𝑓ℎ and 𝑓 , we note that

ISE(𝑓ℎ) =
∫
(𝑓ℎ(𝑥)− 𝑓(𝑥))2𝑑𝑥 =

∫
𝑓 2ℎ(𝑥)𝑑𝑥− 2

∫
𝑓ℎ(𝑥)𝑓(𝑥)𝑑𝑥+

∫
𝑓 2(𝑥)𝑑𝑥 .

Since the last term of the above equation does not depend on 𝑓ℎ, the optimal band-

width ℎ corresponds to the choice that minimizes

∫
𝑓 2ℎ(𝑥)𝑑𝑥− 2

∫
𝑓ℎ(𝑥)𝑓(𝑥)𝑑𝑥 . (A.4)

Concerning the last term of equation (A.4), we note that

∫
𝑓ℎ(𝑥)𝑓(𝑥)𝑑𝑥 = 𝐸𝑋(𝑓ℎ(𝑋)) .
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We may estimate 𝐸𝑋(𝑓ℎ(𝑋)) with the help of the leave-one-out estimates of 𝑓 which

are defined as

𝑓𝑖,ℎ(𝑥) = (𝑛− 1)−1ℎ−1
∑
𝑗 ∕=𝑖

𝐾{ℎ−1(𝑥−𝑋𝑗)} ;

the estimate is given by

ˆ
𝐸𝑋(𝑓ℎ(𝑋)) =

1

𝑛

𝑛∑
𝑖=1

𝑓𝑖,ℎ(𝑋𝑖) .

Next, the cross-validation criterion is defined to be

𝐶𝑉 (ℎ) =
∫
𝑓 2ℎ(𝑥)𝑑𝑥−

2

𝑛

𝑛∑
𝑖=1

𝑓𝑖,ℎ(𝑋𝑖), (A.5)

and it has an associated optimal bandwidth value given by

ℎ𝑐𝑣 = argmin
ℎ
𝐶𝑉 (ℎ) .

Note that the above form of cross-validation function, 𝐶𝑉 (ℎ), is an unbiased estimator

of 𝑀𝐼𝑆𝐸(𝑓ℎ)− ∣∣𝑓 ∣∣22. We can see this since

𝐸(𝐶𝑉 (ℎ)) = 𝐸
(∫
𝑓 2ℎ(𝑥)𝑑𝑥

)
− 2

𝑛

𝑛∑
𝑖=1

𝐸(𝑓𝑖,ℎ(𝑋𝑖))

= 𝑀𝐼𝑆𝐸(𝑓ℎ) + 2𝐸𝑋(𝑓ℎ(𝑋))− ∣∣𝑓 ∣∣22 −
2

𝑛
𝐸

(
𝑛∑

𝑖=1

𝑓𝑖,ℎ(𝑋𝑖)

)
= 𝑀𝐼𝑆𝐸(𝑓ℎ)− ∣∣𝑓 ∣∣22

where we have used that 𝐸𝑋(𝑓ℎ(𝑋)) = 1
𝑛
𝐸
(∑𝑛

𝑖=1 𝑓𝑖,ℎ(𝑋𝑖)
)
.

The cross-validation bandwidth ℎ𝑐𝑣 is random since it depends on the values of

the given sample. On the other hand, if we consider a global measure of discrepancy

of 𝑓ℎ, such as 𝑀𝐼𝑆𝐸(𝑓ℎ), we have that

𝑀𝐼𝑆𝐸(𝑓ℎ) = 𝐸(𝐼𝑆𝐸(𝑓ℎ))

=
∫ ∞

−∞
𝐸{𝑓ℎ(𝑥)− 𝑓(𝑥)}2𝑑𝑥

=
∫ ∞

−∞
bias2(𝑓ℎ(𝑥))𝑑𝑥+

∫ ∞

−∞
var(𝑓ℎ(𝑥))𝑑𝑥 .
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Asymptotically, as ℎ→ 0 and 𝑛ℎ→ ∞ the MISE has the form

𝑀𝐼𝑆𝐸(𝑓ℎ) =
1

𝑛ℎ
∣∣𝐾∣∣22 +

ℎ4

4
∣∣𝑓 ′′∣∣22𝜇22(𝐾)

+𝑜((𝑛ℎ)−1) + 𝑜(ℎ4) .

Ignoring the higher order terms, we obtain the so-called asymptotic-MISE, (𝐴𝑀𝐼𝑆𝐸),

defined as just

𝐴𝑀𝐼𝑆𝐸(𝑓ℎ) =
1

𝑛ℎ
∣∣𝐾∣∣22 +

ℎ4

4
∣∣𝑓 ′′∣∣22𝜇22(𝐾) . (A.6)

The optimal bandwidth associated with 𝐴𝑀𝐼𝑆𝐸 has the form

ℎ𝑎𝑚𝑖𝑠𝑒 =

( ∣∣𝐾∣∣22
∣∣𝑓 ′′∣∣22𝜇22(𝐾)𝑛

)1/5

. (A.7)

We will also let ℎ𝑚𝑖𝑠𝑒 denote the optimal bandwidth associated with 𝑀𝐼𝑆𝐸(𝑓ℎ).

Compared to ℎ𝑐𝑣, the above bandwidth is not random. Comparing it to the

optimal bandwidth ℎ𝑚𝑠𝑒(𝑥) defined at (𝐴.3), the above optimal bandwidth does not

require knowledge of the underlying density 𝑓 . However, both optimal bandwidths

(ℎ𝑚𝑠𝑒 and ℎ𝑎𝑚𝑖𝑠𝑒), require knowledge of 𝑓
′′. One way to get around this problem would

be to directly estimate ∣∣𝑓 ′′∣∣22 (this approach is called the plug-in method). However,

if we were to use ∣∣𝑓 ′′ℎ ∣∣22 as an estimate of ∣∣𝑓 ′′∣∣22 where

∣∣𝑓 ′′ℎ ∣∣22 =
1

𝑛2ℎ5

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝐾 ′′ ∗𝐾 ′′
(
𝑋𝑗 −𝑋𝑖

ℎ

)
, (A.8)

and where ∗ is convolution, then we encounter the following problem. From (A.7), the

optimal bandwidth ℎ𝑎𝑚𝑖𝑠𝑒 is proportional to 𝑛−1/5. Scott and Terrell (1987) proved

that if the kernel 𝐾 and the density function 𝑓 are 4-times continuously differentiable

then

𝐸(∣∣𝑓 ′′ℎ ∣∣22) = ∣∣𝑓 ′′∣∣22 +
1

𝑛ℎ5
∣∣𝐾 ′′∣∣22 +𝑂(ℎ2).
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Therefore, for a bandwidth choice of order ℎ ∼ 𝑛−1/5, ∣∣𝑓 ′′ℎ ∣∣22 is asymptotically a

positively biased estimate of ∣∣𝑓 ′′∣∣22. An improved estimate of ∣∣𝑓 ′′∣∣22 should therefore

be

ˆ∣∣𝑓 ′′∣∣22 = ∣∣𝑓 ′′ℎ ∣∣22 −
1

𝑛ℎ5
∣∣𝐾 ′′∣∣22 =

1

𝑛2ℎ5

𝑛∑
𝑖=1

𝑛∑
𝑗=1,𝑗 ∕=𝑖

𝐾 ′′ ∗𝐾 ′′
(
𝑋𝑗 −𝑋𝑖

ℎ

)
(A.9)

where we obtain the last equality by noting that

𝐾 ′′ ∗𝐾 ′′(0) =
∫
𝐾 ′′(0− 𝑦)𝐾 ′′(𝑦)𝑑𝑦 =

∫
(𝐾 ′′(𝑦))2𝑑𝑦 = ∣∣𝐾 ′′∣∣22 .

Plugging the estimate in (A.9) into (A.6), we obtain the quantity 𝐵𝐶𝑉 (𝑓ℎ) (biased

cross-validation criterion) defined as

𝐵𝐶𝑉 (ℎ) =
1

𝑛ℎ
∣∣𝐾∣∣22 +

𝜇22(𝐾)

4

⎡⎣ 1

𝑛2ℎ

𝑛∑
𝑖=1

𝑛∑
𝑗=1,𝑗 ∕=𝑖

𝐾 ′′ ∗𝐾 ′′
(
𝑋𝑗 −𝑋𝑖

ℎ

)⎤⎦ .
(The above estimate is called biased cross-validation because asymptotically, 𝐸(𝐵𝐶𝑉 (ℎ)) ∕=
𝑀𝐼𝑆𝐸(𝑓ℎ)− ∣∣𝑓 ∣∣22. ) We denote the optimal bandwidth associated with 𝐵𝐶𝑉 (ℎ) by

ℎ𝑏𝑐𝑣.

Regarding the various bandwidths choices introduced thus far, an important ques-

tion is that of the most appropriate bandwidth to choose. Let ℎ𝑚𝑖𝑠𝑒 and ℎ𝑖𝑠𝑒 be the

bandwidths which minimize 𝑀𝐼𝑆𝐸(𝑓ℎ) and 𝐼𝑆𝐸(𝑓ℎ) respectively. Since all of the

various bandwidths are, in one way or another, based on minimizing either𝑀𝐼𝑆𝐸(𝑓ℎ)

or 𝐼𝑆𝐸(𝑓ℎ), if we use ℎ𝑚𝑖𝑠𝑒 as the bandwidth of choice, we are in a situation where

we are trying to minimize a quantity that is being averaged over all possible samples

while on the other hand, ℎ𝑖𝑠𝑒 is minimizing a quantity for the sample at hand (Wand

and Jones, 1995, p. 80). From a conceptual point of view, using ℎ𝑖𝑠𝑒 as the theoretical

standard is thus attractive, but unfortunately, targeting ℎ𝑖𝑠𝑒 is difficult. In particular,

it is a fact that the relative rate of convergence of any data-dependent ℎ̂ bandwidth

to ℎ𝑖𝑠𝑒 cannot be faster than 𝑛−1/10; that is

ℎ̂

ℎ𝑖𝑠𝑒
= 1 +𝑂𝑝(𝑛

−1/10) (A.10)
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as was shown by Hall and Marron (1987). This means that the relative rate of

convergence of ℎ𝑐𝑣 and ℎ𝑏𝑣𝑐 to ℎ𝑖𝑠𝑒 is quite slow. The above rate of convergence also

holds if ℎ̂ is taken to be ℎ𝑚𝑖𝑠𝑒.

The relatively slow rate in (A.10) is the reason we usually take ℎ𝑚𝑖𝑠𝑒 for theoretical

comparison to any other choice of bandwidth. Unfortunately, the relative rates of

convergence of both ℎ𝑐𝑣 and ℎ𝑏𝑐𝑣 to ℎ𝑚𝑖𝑠𝑒 achieve the very slow rate of 1+𝑂𝑝(𝑛
−1/10).

A better bandwidth selection method that is used more widely is that of Sheather

and Jones (1991). This bandwidth, which we denote by ℎ𝑠𝑗, achieves the rate

ℎ𝑠𝑗
ℎ𝑚𝑖𝑠𝑒

= 1 +𝑂𝑝(𝑛
−5/14) .

Below, we explain how ℎ𝑠𝑗 is obtained, following the exposition on bandwidth selection

from Wand and Jones (1995).

The aim is to estimate ℎ𝑎𝑚𝑖𝑠𝑒 as defined in (𝐴.7). To do so, and as noted earlier,

we need to find a proper estimate of ∣∣𝑓 ′′∣∣22. Begin by noting that

∣∣𝑓 (𝑠)∣∣22 =
∫
𝑓 (𝑠)(𝑥)2𝑑𝑥

and using integration by parts,

∣∣𝑓 (𝑠)∣∣22 = (−1)𝑠
∫
𝑓 (2𝑠)(𝑥)𝑓(𝑥)𝑑𝑥

=
∫
𝑓 (𝑟)(𝑥)𝑓(𝑥)𝑑𝑥 .

if 𝑟 = 2𝑠. Define 𝜓𝑟 to be

𝜓𝑟 =
∫
𝑓 (𝑟)(𝑥)𝑓(𝑥)𝑑𝑥 = 𝐸(𝑓 (𝑟)(𝑋)) .

This motivates the estimation

𝜓𝑟(𝑔) =
1

𝑛

𝑛∑
𝑖=1

𝑓 (𝑟)𝑔 (𝑋𝑖) =
1

𝑛2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝐾(𝑟)
𝑔 (𝑋𝑖 −𝑋𝑗)
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where 𝑓 (𝑟)𝑔 (𝑥) is the kernel density estimation of 𝑓 (𝑟)(𝑥). Sheather and Jones show

that the optimal bandwidth associated with the asymptotic MSE(𝜓𝑟(𝑔)) is

𝑔𝑎𝑚𝑠𝑒,𝑟 =

(
2𝐾(𝑟)(0)

−𝜇2(𝐾)𝜓𝑟+2 𝑛

)1/(3+𝑟)

. (A.11)

We can now rewrite ℎ𝑎𝑚𝑖𝑠𝑒 defined at (𝐴.7), as

ℎ𝑎𝑚𝑖𝑠𝑒 =

( ∣∣𝐾∣∣22
𝜇22(𝐾)𝜓4 𝑛

)1/5

(A.12)

and its estimate is given by

ℎ̂𝑎𝑚𝑖𝑠𝑒 =

( ∣∣𝐾∣∣22
𝜇22(𝐾)𝜓4(𝑔𝑎𝑚𝑠𝑒,4) 𝑛

)1/5

where

𝑔𝑎𝑚𝑠𝑒,4 =

(
2𝐾(4)(0)

−𝜇2(𝐾)𝜓6 𝑛

)1/7

. (A.13)

We could go on to estimate 𝜓6 but as we can see, its optimal bandwidth depends

on 𝜓8, and as apparent in (𝐴.11), the general case is that the optimal bandwidth for

estimating 𝜓𝑟 depends on 𝜓𝑟+2.

From (𝐴.12) and (𝐴.13) we note the relationship

𝑔𝑎𝑚𝑠𝑒,4 =

[
2𝐾(4)(0)𝜇2(𝐾)2

∣∣𝐾∣∣22𝜇2(𝐾)

]1/7 (
−𝜓4
𝜓6

)1/7

ℎ
5/7
𝑎𝑚𝑖𝑠𝑒 .

If we define

𝛾(ℎ) =

[
2𝐾(4)(0)𝜇2(𝐾)2

∣∣𝐾∣∣22𝜇2(𝐾)

]1/7 {
−𝜓4(𝑔𝑎𝑚𝑠𝑒,4)

𝜓6(𝑔𝑎𝑚𝑠𝑒,6)

}1/7

ℎ5/7 ,

we are led to another “stage selection” problem since the estimates of 𝑔𝑎𝑚𝑠𝑒,4 and

𝑔𝑎𝑚𝑠𝑒,6 are themselves based on 𝜓6 and 𝜓8, respectively. At this stage we could

choose to estimate 𝜓6 and 𝜓8 assuming that the design density 𝑓 is the density of the
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normal distribution where the mean and the variance maybe be estimated from the

data. Letting 𝜓𝑁𝑆
6 and 𝜓𝑁𝑆

8 be such estimates of 𝜓6 and 𝜓8, respectively, we obtain

𝑔𝑎𝑚𝑠𝑒,4 =

(
2𝐾(4)(0)

−𝜇2(𝐾)𝜓𝑁𝑆
6 𝑛

)1/7

and

𝑔𝑎𝑚𝑠𝑒,6 =

(
2𝐾(6)(0)

−𝜇2(𝐾)𝜓𝑁𝑆
8 𝑛

)1/9

.

Letting

𝛾(ℎ) =

[
2𝐾(4)(0)𝜇2(𝐾)2

∣∣𝐾∣∣22𝜇2(𝐾)

]1/7 {
−𝜓4(𝑔𝑎𝑚𝑠𝑒,4)

𝜓6(𝑔𝑎𝑚𝑠𝑒,6)

}1/7

ℎ5/7 ,

the selected bandwidth is the solution to the equation

ℎ =

( ∣∣𝐾∣∣22
𝜇22(𝐾)𝜓4(𝛾(ℎ)) 𝑛

)1/5

.

A.5 Further properties of the kernel density esti-

mator

Plugging ℎ𝑎𝑚𝑖𝑠𝑒 into equation (𝐴.6), we obtain

𝐴𝑀𝐼𝑆𝐸(𝑓ℎ𝑎𝑚𝑖𝑠𝑒
) =

5

4
(∣∣𝐾∣∣22)4/5(∣∣𝑓 ′′∣∣22𝜇22(𝐾))1/5𝑛−4/5.

A natural question to then ask would be what the effect of the kernel function 𝐾

is on the value of 𝐴𝑀𝐼𝑆𝐸(𝑓ℎ𝑎𝑚𝑖𝑠𝑒
). Note that the term which measures the rough-

ness of the underlying density, ∣∣𝑓 ′′∣∣22, is not under our control, whereas the term

(∣∣𝐾∣∣22)4/5(𝜇22(𝐾))1/5 is a function of the kernel function only, and as such, is the only

term which can be controlled. If we consider a class of kernels, such that the kernels

𝐾 in this class are restricted to be non-negative, with

∫
𝐾(𝑢)𝑑𝑢 = 1,

∫
𝑢𝐾(𝑢)𝑑𝑢 = 0, and

∫
𝑢2𝐾(𝑢)𝑑𝑢 = 𝑎2 <∞,
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then the class of kernels which minimize 𝐶(𝐾) = (∣∣𝐾∣∣22)4/5(𝜇22(𝐾))1/5 may be shown

to be of the form

𝐾𝑎(𝑢) =
3

4

1

51/2𝑎

(
1− 𝑢2

5𝑎2

)
𝐼(∣𝑢∣ ≤ 51/2𝑎)

(Wand and Jones (1995, p. 30)). Since 𝑎 is an arbitrary scale parameter, the simplest

version of 𝐾𝑎 corresponds to 𝑎2 = 1/5. This leads to the kernel

𝐾∗(𝑢) =
3

4

(
1− 𝑢2

)
𝐼(∣𝑢∣ ≤ 1)

which is called the Epanechnikov kernel. For the Epanechnikov kernel, the value of

𝐶(𝐾∗)5/4 is 3/(5
√
5) (Simonoff (1994, p. 44)). To study the relative inefficiency of

using other kernels, we look at the ratio of (𝐶(𝐾)/𝐶(𝐾∗))5/4. Table A.1, adopted

from Simonoff (1996, p. 44), lists this ratio for several commonly used kernels. All

Table A.1: Inefficiency of various kernels relative to the Epanechnikov kernel.

Kernel Form Inefficiency

Epanechnikov 3
4 (1 − 𝑢2) 1

Biweight 15
16 (1 − 𝑢2)2 1.0061

Triweight 35
32 (1 − 𝑢2)3 1.0135

Gaussian (2𝜋)−1/2𝑒−𝑢2/2 1.0513

Uniform 1
2 1.0758

Adopted from Simonoff (1996), p. 44
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kernels except the Gaussian is zero outside of the interval [−1, 1, ]. As is evident, the

choice of kernel makes very little difference in the value of 𝐴𝑀𝐼𝑆𝐸, and therefore in

choosing a kernel, our choice may be based on other considerations, such as ease of

computation or properties of 𝑓 (Simonoff (1994, p. 44).
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Computer Code Description

B.1 Description of the codes for computing docu-

ment date estimates in Chapter 5

In all of the computer programs described below, the computations were carried out

on a number of UNIX platforms (SGI Challenge L, running IRIX Version 6; Sun

280R, running Solaris 9; and Dell Power PC, running Solaris86 Version 8) employing

the C programming language and standard UNIX commands such as ‘sort’, ‘uniq’,

‘diff’ ‘cut’ and ‘wc’. Four separate programs were used to produce the date estimates.

Below we describe each one separately.

(1) Description of the programming code cleanandcut.c

The first program, called cleanandcut.c, takes as an input the original file called

rawdatafile.txt containing the DEEDS documents. It removes from the documents

characters such as “=” and “=20” which indicate carriage returns left by the original

editing programs. The program also sequentially assigns a number, ranging from 1 to

3353, to each of the documents. Each document is then separately written into a file

154
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with a filename corresponding to the document number. Finally another, separate,

file called masterfile is constructed which contains a list of all 3353 documents along

with the true dates in which they were written.

(2) Description of the programming code shingler.c

A second program, called shingler.c, breaks up each of the documents (i.e. the

outputs of cleanandcut.c) into shingles of a desired shingle order. For the purpose of

this thesis, the documents were shingled into orders of 1, 2 and 3. As an example,

we display outputs of the programs cleanandcut.c and shingler.c for the following

document from the DEEDS data set:

”00640217”,”1238”,

/

Memorandum quod cum inter dominum Robertum Sarum episcopum ex parte una et

Henricum abbatem et conventum Scyreburne ex altera super =

amerciamentis provenientibus de pane et cerevisia venditis contra =20

assisam de hominibus praedicti abbatis infra libertates praedicti =

episcopi existentibus in hundredis de Syreburne et de Bemenistre =

discordia fuisset suscitata asserente episcopo praefato hujusmodi =20

amerciamenta ad jus suum pertinere et se et praedecessores suos in eorum =

seisina diu et in pace extitisse praedicto abbate penitus contrarium =

asserente tandem mediantibus discretis viris domino =20

Roberto decano et capitulo Sarum inter partes hujusmodi amicabilis =

compositio intercessit: videlicet quod praenominato episcopo pro se et =

successoribus suis de assensu capituli Sarum omnis =20

amerciamenta de pane et cerevisia contra assisam venditis et de =

cerevisia male braciata de omnibus hominibus in terris et feudis =

praedicti abbatis infra hundreda praedicta existentibus jus petitionem =20
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et saisinam si quam habuit dicto Henrico abbati et successoribus suis =

futuris et perpetuis temporibus remittente et quieta clamante idem abbas =

promisit et se et successores suos per cartam suam et =20

conventus sui obligavit quod pro hac remissione et quieta clamatione =

praedicto episcopo et successoribus suis dimidiam marcam annuam ad =

Pascha in perpetuum persolvet apud Syreburne Et ut haec =20

compositio futuris et perpetuis temporibus rata et stabilis perseveret =

confecta sunt inde inter partes duo scripta quorum unum signatum =

sigillis praedictorum episcopi et capituli penes praedictos =20

abbatem et conventum in perpetuum remanebit et aliud signatum sigillo =

abbatis et conventus penes dictum episcopum et capitulum in perpetuum =

remanebit His testibus dominis Roberto decano Rogero =20

praecentore Ada cancellario Johanne thesaurario Sarum Egidio =

archidiacono Berksyre Stephano archidiacono Wilthesyre Hugone abbate =

Abbedesbire Henrico de Sancto Edmund Willelmo de Cambe Ricardo de =20

Cnolle Petro de Cumbe et aliis Datum apud Syreburne per manus Henrici =

Isumberd [al Ysembard] monachi !xvi! Kalend Septembris anno gratiae !m =

cc xxxviii! =20

/

The “/” indicates the separation between documents, and the identification and

date of the document are located at the top left hand-side (for example, the above

document is dated 1238 ). When the entire corpus containing all of the DEEDS

documents is entered into cleanandcut.c, the particular document shown above, which

is located at the 3rd position of the DEEDS data set, is assigned the file name

‘file0003’. The contents of file0003 reads:

Memorandum
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quod

cum

inter

dominum

Robertum

Sarum

episcopum

...

...

gratiae

!m

cc

xxxviii!

The program shingler.c takes as input the desired value 𝑘 of the shingle order

and transforms the contents of each output file of cleanandcut.c into a list of 𝑘-

order shingles, listing these shingles in sorted order where repetitions of shingles are

allowed should they occur. For 𝑘 = 3 for example, the new file file0003.shingled reads

as follows:

!m cc xxxviii!

!xvi! Kalend Septembris

Abbedesbire Henrico de

Ada cancellario Johanne

Bemenistre discordia fuisset

Berksyre Stephano archidiacono

Cambe Ricardo de

Cnolle Petro de
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...

...

venditis contra assisam

venditis et de

videlicet quod praenominato

viris domino Roberto

(3) Description of the programming codes corr-sh1.c, corr-sh2.c and corr-sh3.c.

A third program – actually a set of programs – computes the type (II) (𝛼 = 1)

correspondence distance measures between all the pairs of documents in the DEEDS

data set. Specifically, for each shingle order (1, 2 and 3), we have separate programs

called corr-sh1.c, corr-sh2.c and corr-sh3.c. The results of these programs are stored

in 3 directories each of which contains 3353 files containing the correspondence mea-

sures between that given document and all the other documents in the DEEDS data

set.

(4) Description of the programming codes surround-optimize-test1.c, surround-optimize-

test12.c and surround-optimize-test123.c, and surround-optimize-val1.c, surround-

optimize-val12.c and surround-optimize-val123.c,

The fourth and the final set of programs use the distance measures produced by

the third set of programs to compute the date estimates for documents in the test set

based on equation (5.2). Two separate programs are used and are called surround-

optimize-test1.c, surround-optimize-test12.c and surround-optimize-test123.c. The

first of these computes date estimates based on a single shingle order, the second

program computes date estimates based on a two separate shingle orders and the

third program computes date estimates based on a three separate shingle orders.

The optimal bandwidths associated with the distance weights in (5.1) were found
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using the cross-validation procedure described in Section 5.2, equation (5.3). The

search for the optimal bandwidths for each document in the test set was carried out

over a 𝑘-dimensional grid where 𝑘 is the shingle order. Analogously, codes surround-

optimize-val1.c, surround-optimize-val12.c and surround-optimize-val123.c compute

the date estimates for documents in the validation set.

B.2 Description of the codes for computing docu-

ment date estimates in Chapter 6

We used a total of eight sets of computer programs written in the C language and

various UNIX system functions to produce the results of Section 6.5. The first two

programs called cleanandcut.c and shingler.c were described in Appendix B.1. We

will now describe the remaining six sets of programs.

(1) Description of the programming codes merger1.c, merger2.c, merger3.c

and merger4.c.

Each of the elements of a third set of computer programs, merger1.c, merger2.c,

merger3.c and merger4.c merges the 𝑘-shingle order documents from the training

set, for 𝑘 = 1, 2, 3 and 4 respectively, into a file called mergerfile. The file contains

sequences of shingles, and juxtaposed with each shingle, we indicate the date of the

document in which the shingle is found. The lines of the file mergerfile are not

necessarily distinct, so that if a shingle is repeated more than once in the same

document, the shingle, along with the date of the document in which it occurred, will

appear that same number of time in the file mergerfile.

Various UNIX commands, such as cut, sort and uniq, were also used to produce

files, such as, mergershing1sortuniq, mergershing2sortuniq, mergershing3sortuniq and
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mergershing4sortuniq. These files are sorted by shingles, and each line of the file

contains the number of times that a shingle occurred, the dates in which it occurred,

and the number of times it occurred within that date. The shingles are all derived

from the shingled documents of the training set. As an example, below we show some

of the contents of mergershing2sortuniq:

1 !1!@acra 1309

1 !1!@acram 1309

1 !1!@bussellam 1309

1 !1!@mesuagium 1309

1 !1!@repastum 1309

2 !1!@vomer 1309

...

1 zelo@iusticie 1264

1 zelum@deuocionis 1281

1 zinzeberis@ad 1294

1 zinziberis@ad 1274

1 zonam@de 1282

1 zonam@sericam 1292

In addition, we also created files called mergerdate1sortuniq, mergerdate2sortuniq,

mergerdate3sortuniq and mergerdate4sortuniq, for each shingle order 𝑘 = 1, 2, 3 and 4

respectively. These files contain the total number of non-distinct shingles for each of

the training document dates. We also created files named mergershing1onlysortuniq ,

mergershing2onlysortuniq , mergershing3onlysortuniq and mergershing4onlysortuniq.

Each of these files contain a list of distinct shingles derived from the shingled docu-

ments of the training set for shingle orders 1,2,3 and 4, respectively. As an example

below is some of the content of the file mergershing2onlysortuniq:
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!1!@acra

!1!@acram

!1!@bussellam

!1!@mesuagium

!1!@repastum

!1!@vomer

...

zelo@iusticie

zelum@deuocionis

zinzeberis@ad

zinziberis@ad

zonam@de

zonam@sericam

(2) Description of the programming code dateshing.c.

The fourth set of computer program contains dateshing.c. This program takes

as an input, for example, the file mergershing1sortuniq and outputs the number of

times each of the shingles in mergershing1onlysortuniq occurs for each consecutive

date starting from the minimum date (1089) to the maximum date (1466) of the

training documents. The output is stored in a file called dateshingresultfile. Below is

an example of what this might look like for the shingle baptiste.

baptiste 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 2 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 4 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(3) Description of the programming code datetotalshing.c.

The fifth set of computer programs contain datetotalshing.c. This program takes as

an input, for example, the file mergerdate1sortuniq, and outputs a file called datetotal.

This file contains the total number of shingles for each consecutive year starting from

1089 to 1466.

(4) Description of the programming codes dateshing1prob.c, dateshing2prob.c,

dateshing3prob.c and dateshing4prob.c.

The sixth set of computer programs containing dateshing1prob.c, dateshing2prob.c,

dateshing3prob.c and dateshing4prob.c evaluates the Nadaraya-Watson type estima-

tor, �̂�𝑠(𝑡) (see (6.5)), for each shingle 𝑠 at time 𝑡 ranging consecutively from 1089 to

1466, and for the shingle order 𝑘 = 1, 2, 3 and 4, respectively. The inputs are datesh-

ingresultfile, datetotal and a bandwidth value ℎ. The result is stored in a directory

containing files and each of these files correspond to a shingle. Each file contains �̂�𝑠(𝑡)

for each time 𝑡 for the corresponding shingle. An example of the content of such a

file, freq22156, corresponding to the shingle baptiste is given below:

0.000000016137 0.000000017163 0.000000018340 0.000000019683 0.000000021208 0.000000022929

0.000000024864 0.000000027029 0.000000029439 0.000000032110 0.000000035057 0.000000038294

0.000000041836 0.000000045695 0.000000049884 0.000000054415 0.000000059300 0.000000064551

. . .

0.000000002795 0.000000002600 0.000000002407 0.000000002220 0.000000002039 0.000000001867

0.000000001705 0.000000001555 0.000000001418 0.000000001293 0.000000001182 0.000000001082

0.000000000995 0.000000000918 0.000000000852 0.000000000794 0.000000000745 0.000000000703
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(5) Description of the programming codes datevalshing1.c, datevalshing2.c, dateval-

shing3.c and datevalshing4.c.

The seventh set of computer programs containing datevalshing1.c, datevalshing2.c,

datevalshing3.c and datevalshing4.c takes as an inputmergershing1onlysortuniq,merg-

ershing2onlysortuniq,mergershing3onlysortuniq andmergershing4onlysortuniq respec-

tively, and the file called masterfile (for a description of this file, see the description

of the programming code cleanandcut.c). The outputs, dateshing1valprob, datesh-

ing2valprob, dateshing3valprob and dateshing4valprob each contain a list of the esti-

mated dates of the validation documents based on shingle order 𝑘 = 1, 2, 3 and 4

respectively. The error in the dating of the validation documents can be computed

by comparing the estimated dates to the true dates for a given bandwidth. The

bandwidths (for each shingle order we have a separate bandwidth) that produce the

minimum MSE between the estimated dates and the true dates (we will call these

bandwidths the optimal bandwidths) are then used for computing the estimated dates

of the documents in the test set.

(6) Description of the programming codes datetestshing1.c, datetestshing2.c, datetest-

shing3.c and datetestshing4.c.

Based on the optimal bandwidths, the eighth set of computer programs containing

datetestshing1.c, datetestshing2.c, datetestshing3.c and datetestshing4.c corresponding

to shingle orders 1, 2, 3 and 4 respectively, compute the date estimates of documents

in the test set. The results, corresponding to each shingle order 1, 2, 3 and 4 are

stored in four separate files. The computer programs described above are essentially

the same as those of the seventh set of computer programs, except that the documents

are now estimating those of the test set. It is these date estimates of the validation set

and the test set that are used in computing the results that are presented in Table 6.1

and Table 6.2, respectively.
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